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a b s t r a c t

The solid-liquid phase change process is important to phase change material (PCM). In this paper, in order
to investigate the solid-liquid phase change process in a spherical capsule, the axisymmetric lattice
Boltzmann (LB) for phase change is proposed firstly. The problems of one-region phase change in cylin-
drical coordinate system and solid-liquid phase change by convection in cylindrical enclosure have been
solved to verify the present LB model. The distributions of outer wall temperature of spherical capsule are
linear. The results show that more heat transferred through the upper region of outer wall may enhance
the natural convection and accelerate the process of heat transfer. However, the ratio of energy consumed
by latent heat decreases with the slope, leading to more non-uniform temperature distribution.
Furthermore, when the slope is larger than 0.2547, more heat is applied to rise the temperature of
PCM, resulting in the slower melting rate.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The phase change material (PCM) has been widely used in ther-
mal energy storage, temperature maintaining and so on, with the
abilities of unobvious temperature variation during solid-liquid
phase change process [1]. To reveal the temperature distribution
and trace the location of solid-liquid interface, some numerical
methods have been proposed, including the conventional compu-
tational fluid dynamics (CFD) method [2], molecular dynamics
(MD) method [3] and dissipative particle dynamics (DPD) method
[4]. Derived from the Boltzmann transport equation, with the abil-
ities of easy parallel computing implementation, the lattice Boltz-
mann (LB) method has been applied to solve the solid-liquid
phase change problems.

There are three categories of phase change LB model [5]: phase-
fieldmethod, immersed boundarymethod and enthalpymethod. In
phase-field method, the order parameter was used to distinguish
solid phase and liquid phase by Miller et al. [6,7]. Cartalade et al.
[8] proposed a phase-filed LB model for 3D crystal growth. Huang
and Wu [9] developed a phase change LB model using immersed
boundary method, in which the solid-liquid interface was traced
by a series of Lagrangian points. However, both the immersed
boundary method and phase-filed method are complicated [10].
Jiaung et al. [11] developed the enthalpy based phase change LB
model. In Jiaung’s model, a source term for latent heat was intro-

duced into the evolution equation of temperature distribution func-
tion. The temperature and liquid fraction at the samemoment were
obtained by iterations. Based on this, Huber et al. [12] improved the
model and solved the problem of phase change by convection. Then,
the model was applied to porous medium (representative elemen-
tary volume scale [13–15] and pore scale [16,17]) and nanoparticle-
enhanced PCM [18,19]. To avoid the iterations, the implicit scheme
[20] and quasi-enthalpy method [21] have been established. Huang
et al. [10] formulated a new phase change LB model based on the
total enthalpy, and whose accuracy was verified by Luo et al. [22].
Furthermore, the multiple-relaxation-times (MRT) scheme and
adaptive mesh refinement scheme were developed by Huang and
Wu [5,23]. Wu et al. [24] extended the total enthalpy method to
the porous medium. Gao et al. [25,26] established a modified total
enthalpy method to avoid the effects of flow field on evolution
equation of total enthalpy. In our previousworks, the total enthalpy
method was employed in phase change under constant heat flux
and battery thermal management [27,28].

In this paper, the axisymmetric phase change LB model is firstly
proposed. The model is verified by solving the problems of one-
region phase change in cylindrical coordinate system and axisym-
metric convection dominated phase change. Then, the heat and
mass transfer process of phase change in a spherical capsule is
investigated. The temperature distributions of capsule’s outer wall
are linear. The variations of average temperature, temperature
standard deviation, total liquid fraction and ratio of energy con-
sumed by latent heat have been considered.
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2. Numerical method

2.1. Conservation equation

The conservation equations, including mass, momentum and
energy for incompressible, laminar, Newtonian and pure PCM in
cylindrical coordinate are [29]:
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is velocity. dr is the Kronecker delta with two indices (r coordinate:
1, z coordinate: 0). q, p, l, Cp, T and k are density, pressure, dynamic
viscosity, specific heat at constant pressure, temperature and ther-
mal conductivity, respectively. H in Eq. (3) is the total enthalpy,
which can be obtained from:

H ¼ CpT þ hsl f l ð4Þ

where hsl and f l are the latent heat and liquid fraction. F in Eq. (2) is
the body force and in this paper, the buoyancy has been considered.
Using the Boussinesq assumption, the buoyancy can be calculated
by [10]:

F ¼ �gbðT � TrefÞ ð5Þ

where g is the acceleration due to gravity. b and Tref are the thermal
expansion coefficient and reference temperature.

2.2. Axisymmetric LB model for flow field

The double-distributions model is applied in this paper. The
evolution equation for density distribution function (flow field) is
as follows [30]:
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where f i and f eqi are the density distribution function and
corresponding equilibrium distribution function in direction i.
ei ¼ ðeir ; eizÞ is the ith discrete velocity. sf is dimensionless relax-
ation time. The equilibrium distribution function can be obtained
by [30]:
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where xi is the weight coefficient in direction i, and cs is the lattice
sound speed. In D2Q9 model, the weight coefficient and discrete
velocity are given by:
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where c ¼ Dx=Dt is lattice speed and c2s ¼ 1=3c2.
The source term Si in Eq. (6), can be expressed as:
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And the macroscopic quantities are given by:
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Using the Chapman-Enskog expansion, Eq. (1) and (2) can be
derived from Eq. (6), with [30]:

sf ¼ l
qc2s dt

þ 0:5 ¼ m
c2s dt

þ 0:5 ð14Þ

where m is the kinetic viscosity.

2.3. Axisymmetric phase change LB model

Based on the work of Zheng et al. [31] and Huang et al. [10], the
evolution equation of total enthalpy distribution function can be
developed as follows:
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where gi and sg are the total enthalpy distribution function in direc-
tion i and dimensionless relaxation time, respectively. geq

i is the cor-
responding equilibrium distribution function, which is obtained
from:
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The total enthalpy can be calculated from:
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X
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Then, the temperature can be derived from:
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where the subscript ‘‘l” and ‘‘s” represent ‘‘liquid” and ‘‘solid”. The
source term in Eq. (15) can defined as:
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Eq. (3) can be derived from Eq. (15) using the Chapman-Enskog
expansion. Firstly, taking a second-order Taylor series expansion to
Eq. (15) in time and space, it can be got that:
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