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a b s t r a c t

We examine the entropy generation regarding its magnitude and the limit as time tends to infinity and
apply the second law of thermodynamics to develop mathematical inequalities with heat conduction in
adiabatic cylinders. The former shows a bounded entropy generation if the heat conduction is initiated by
the initial temperature distribution, but unbounded if the heat conduction involves a heat source with
positive volume average over the cylinder. The latter yields various innovative relations that are useful
both for studying differential equations and for examining accuracy of analytical, numerical and exper-
imental results. The work not only builds up the relation between the second law of thermodynamics
and mathematical inequalities, but also offers some fundamental insights of universe and our future.

� 2018 Published by Elsevier Ltd.

1. Introduction

As an important transport process, heat conduction is governed
by the first and the second laws of thermodynamics [1–3]. With
the classical Fourier’s law of heat conduction as the constitutive
relation of heat flux density, the relation between the heat flux
density vector and the temperature gradient [1,4], the first law of
thermodynamics yields the classical heat-conduction equation
whose solution provides the temperature field [1,3]. The applica-
tion of the Fourier’s law of heat conduction will then lead to heat
transfer rate and the way to control it [1,3].

Applied to heat conduction, the second law of thermodynamics
states that: the entropy generation Sgen of a system during heat
conduction always increases, or, in the limiting case of a reversible
process, remains constant, i.e., dSgen=dt P 0 with t being the time
[5,6]. This requires that Sgenðt2Þ P Sgenðt1Þ for all t2 P t1. With
knowing temperature field from the heat-conduction equation,
the entropy generation Sgen becomes available [5,6]. Applying
dSgen=dt P 0 and Sgenðt2Þ P Sgenðt1Þ can then yield mathematical
inequalities and thus solution features of heat-conduction equa-
tions [2].

The classical macroscopic definition of entropy provides little
on its physical meaning [5–19]. Indeed, our understanding and
appreciation of entropy come mainly from its applications in

various processes and systems. To address this unsatisfactory
issue, the first and second laws of thermodynamics were employed
in [19] to prove rigorously the process-independence of the heat
exchanged between the environment and a system undergoing a
totally reversible process, Q12

0R , between State 1 and State 2.

Although heat is normally process-dependent, Q12
0R is the same for

all totally reversible processes between two specified states 1
and 2. We may thus define entropy at arbitrary state 1, as
S1 ¼ CQ10

0R, where state 0 is the reference state whose energy and
entropy are assigned to be zero, and C can be any positive con-
stants [19]. The introduction of C is to recover the classical defini-
tion of entropy with C being 1=T0 (T0 stands for the environment
temperature). It is however more convenient and desirable for
showing the nature of entropy and performing entropy analysis
to choose C = 1 (no unit such that Swith an energy unit). Therefore,
the entropy S at any state is actually the part of the system energy
that cannot be converted into work even with totally reversible
processes.

Energy is conserved by the first law of thermodynamics [1,5,6].
The very essence of entropy is the part of system energy that can-
not be transformed into useful work [19]. Any entropy generation
will then degrade the quality of energy. It becomes thus significant
and relevant to examine dSgen=dt regarding the way to reduce its
magnitude and limt!1Sgen regarding whether it is bounded or not.

The present work aims to develop above-mentioned mathemat-
ical inequalities and examine dSgen=dt and limt!1Sgen with heat
conduction in three-dimensional cylinders. Note that such an

https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.055
0017-9310/� 2018 Published by Elsevier Ltd.

⇑ Corresponding author at: Department of Mechanical Engineering, The Univer-
sity of Hong Kong, Hong Kong.

E-mail address: lqwang@hku.hk (L. Wang).

International Journal of Heat and Mass Transfer 121 (2018) 1137–1145

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2018.01.055&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.055
mailto:lqwang@hku.hk
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.055
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


analysis is very limited in the literature and differs fundamentally
from other studies of the second law analysis [20–45]. The latter
has been made with various approaches [21,22,24,26,42–45] that
include the classical entropy [21,22,24], exergy [26,44] and
energy-order [45] analysis. The aim of such conventional analyses
is mainly for performance evaluation, weak-component identifica-
tion or performance optimization by varying geometrical, thermal-
physical or dynamic parameters in practical systems/processes
[20–45]. The present work promotes innovative applications of
heat-transfer studies in distinguishing technologies that are with
either bounded or unbounded entropy generation, offering funda-
mental insights of universe and future, and developing mathemat-
ical inequalities. In Section 2, we make analytical derivation of
temperature field, entropy generation and its limit, and mathemat-
ical inequalities. Our derivation is made for the heat conduction
driven by the initial temperature distribution, by the internal
source and by the both, respectively, with the more details being
given for the first case. In Section 3, we summarize the inequalities
developed in Section 2 and the physical implication of the entropy
generation and its limit obtained in Section 2. We draw some con-
cluding remarks in Section 4.

2. Temperature field, entropy generation and mathematical
inequalities

Consider heat conduction in a cylinder X of radius a and height
hwith constant material properties and specified temperature gra-
dient at the cylinder boundary, the second kind or Neumann
boundary condition [1]. As the contribution of nonhomogeneous
boundary condition to the temperature field can be represented
by source and initial terms [2], we can focus our attention to the
following initial-boundary value problem with homogeneous
boundary conditions in cylindrical coordinates, shown in Fig. 1,
without loss of the generality:

Tt ¼ a20DT þ f ðr; h; z; tÞ;X� ð0;þ1Þ
Tr jr¼a ¼ 0; Tzjz¼0;h ¼ 0
Tjt¼0 ¼ uðr; h; zÞ:

8><
>: ð1Þ

X : 0 < r < a; 0 < h < 2p; 0 < z < h

where t and T are time and temperature, respectively. a2
0 is the ther-

mal diffusivity. uðr; h; zÞ is the initial temperature distribution over
the cylinder. f ðr; h; z; tÞ is the rate of heat generation inside the
cylinder per unit volume and per unit specific capacity of the mate-
rial. The heat generation may be due to nuclear, electrical, chemical,
gammy-ray, or other sources that may be a function of time and/or
position.

2.1. Heat conduction initiated by the initial temperature distribution

For the heat conduction driven by the initial temperature distri-
bution, f ðr; h; z; tÞ ¼ 0, and Eq. (1) reduces into

Tt ¼ a20DT; X� ð0;þ1Þ
Tr jr¼a ¼ 0; Tzjz¼0;h ¼ 0
Tjt¼0 ¼ uðr; h; zÞ:

8><
>: ð2Þ

To obtain the solution of (2), consider Tðr; h; z; tÞ ¼ TðtÞUðr; h; zÞ, Eq.
(2) thus yields

T 0ðtÞ
a20TðtÞ

¼ DUðr; h; zÞ
Uðr; h; zÞ ¼ �k; k : constants:

Therefore

T 0ðtÞ þ ka20TðtÞ ¼ 0 ð3Þ

DUðr; h; zÞ þ kUðr; h; zÞ ¼ 0 ð4Þ

Nomenclature

a cylinder radius
a20 thermal diffusivity
CV specific heat at constant volume
f internal source
h cylinder height
S total system entropy
Sgen entropy generation
t time
T temperature

Greek symbols
q density
d d function

u initial temperature distribution
X heat-conduction domain

Subscripts
gen generation
0 environment
u heat conduction driven by initial temperature distribu-

tion
f heat conduction driven by internal source
uf heat conduction driven by initial temperature distribu-

tion and internal source

Fig. 1. Heat conduction in adiabatic cylinders and cylindrical coordinate system.
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