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a b s t r a c t

This paper proposes highly accurate one-step backward-forward algorithms for solving multi-
dimensional backward heat conduction problems (BHCPs). The BHCP is renowned for being ill-posed
because the solutions are generally unstable and highly dependent on the given data. In this paper,
the present algorithm combines algebraic equations with a high-order Lie-group scheme to construct
one-step algorithms called the backward fictitious integrate method (BFTIM) and the forward fictitious
integrate method (FFTIM). First, the original parabolic equation is transformed into a new parabolic equa-
tion of an evolution type by introducing a fictitious time variable. Then, the numerical integration of the
discretized algebraic equations must satisfy the constraints of the cone structure, Lie-group and Lie alge-
bra at each fictitious time step. Finally, the algorithms with the minimum fictitious time steps along the
manifold of the Lie-group scheme approach the true solution with one step when given an initial guess. In
addition, this paper provides a strategy to determine the initial guess, which is the reciprocal relationship
of the initial condition (IC) and the final condition (FC). More importantly, the IC and FC can be recovered
by the BFTIM and FFTIM according to the relation between the IC and FC, even under large noisy measure-
ment data. Five numerical examples of the BHCP are tested and numerical results demonstrate that the
present schemes are more effective and stable. In general, the numerical implementations of the BFTIM
and FFTIM are simple and have one-step convergence speeds.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heat conduction problems (HCPs) in engineering applications
are widely classified as direct heat conduction problems (DHCPs)
and inverse heat conduction problems (IHCPs). For these problems,
it is very difficult to obtain analytical and exact solutions. There-
fore, highly accurate and efficient numerical methods for DHCPs
have recently been developed, especially with finite element
methods [1–3], finite volume methods [4–6], boundary element
methods [7–9], and meshless methods [10–13]. Compared with
mesh-dependent or meshless approaches, these approaches use
different discrete techniques to increase the accuracy and stability
of the numerical solution, although they cannot avoid numerical
error accumulation and propagation in the time direction,
especially with initial values containing noise effects.

An IHCP involves the estimation of physical quantities, such as
boundary or initial conditions, source-sink terms, and material
properties. These problems are referred to as backward heat con-
duction problems (BHCPs). Mathematically, BHCPs are classified
as the most strongly ill-posed problems because their solutions

are unstable for the given input data. Many researchers have stud-
ied BHCPs. Han et al. [14] used the boundary element method com-
bined with a minimal energy technique to resolve the
homogeneous BHCP. Lesnic et al. [15], Mera et al. [16,17], and
Jourhmane and Mera [18] used the iterative boundary element
method for homogeneous BHCPs. Muniz et al. [19] proposed an
explicit inversion method and a sequential scheme of inversion
to solve homogeneous BHCPs. Several investigators have solved
BHCPs using various approaches discussed in the literature. How-
ever, unsolved numerical stability and multi-dimensional prob-
lems remain. Regularization approaches [19,20] have been
widely proposed and applied, including the conjugate gradient
method with an adjoint equation [21–23], the regularized solution
using a quasi-Newton method, and the regularized solution using
the genetic algorithm (GA) method. Muniz et al. [20] adopted
Tikhonov regularization, the maximum entropy principle, and
truncated singular value decomposition to solve homogeneous
BHCPs and obtained promising results. Mera [24] developed the
method of fundamental solutions (MFS) and combined the method
with the standard Tikhonov regularization technique to address
BHCPs. Liu [25] proposed an implicit method and the explicit dif-
ference scheme to solve forward and backward heat conduction
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equations. However, the iterative methods, the meshless method,
and the Tikhonov regularization technique with the L-curve
method still exhibit numerical stability problems. Very recently,
Wang et al. [26–28] applied the singular boundary method (SBM)
in conjunction with several regularization techniques to deal with
2D thin-walled structures and 3D Cauchy problems of steady heat
conduction. The strategy of SBM can avoid the numerical instabil-
ity, and the precision does not change with the computational
domain. For long time spans and final conditions with large noise
levels, the BHCPs have been very difficult to solve.

Recently, a numerical method with a special structure was
applied to handle DHCPs and IHCPs very effectively. Liu et al.
[29,30] applied the backward group-preserving scheme (BGPS) to
address homogeneous BHCPs. Chang et al. [31] proposed the Lie-
group shooting method (LGSM) for the quasi-boundary regulariza-
tion of multi-dimensional BHCPs. Liu [32] employed a spatial-
direction LGSM to address 1-D BHCPs; Liu and Chang [33] used
the GLðn;RÞ scheme to recover an unknown initial temperature
for a 1-D nonlinear BHCP. Although the GLðn;RÞ scheme can handle
long time spans and initial conditions with noise disturbances, it
cannot address the multi-dimensional BHCPs. From the above
numerical results, the solutions obtained using the LGSM still suf-
fer from noise propagation, and the time step increment, the con-
vergent criterion, and the lattice spacing length are important
parameters that must be chosen. Thus, these numerical schemes
with special structures cannot avoid integration paths in space
and time.

To overcome these problems, Liu and Atluri [34] developed a
fictitious time integration method (FTIM) to solve large systems
of nonlinear algebraic equations and showed that this method
could achieve high performance. Chang [35] and Liu and Chang

[36] further applied a fictitious time integration method for
multi-dimensional backward heat conduction problems in Min-
kowski space. Although the approach provided good results, even
for a large noise effect, it is difficult to choose the relevant param-
eters, such as the viscosity-damping coefficient, the fictitious time
step, and the fictitious terminal time, especially the initial guess
values. When these parameters are determined, numerical insta-
bility occurs that varies with time integration. Hence, this paper
employs the FTIM combined with high-order explicit Lie-group
schemes based on GLðn;RÞ to preserve the space–time manifold
and avoid determining any parameters, including the viscous
damping coefficient, the fictitious time step, the fictitious terminal
time, the convergent criterion, and the initial guess value.

To make the integration path of the algebraic equation along
with the manifold of the group-preserving scheme (GPS), which
was proposed by Liu [37], the present strategy develops the
high-order GPS to integrate in time and over a fictitious time direc-
tion. Liu [38] proved that the implicit and explicit Lie-group
schemes based on GLðn;RÞ are equivalent to the GPS in Minkowski
space. There are three types of properties in the GPS: cone con-
struction, Lie algebra, and group properties. According to the man-
ifold, the integration path of the FTIM must satisfy the GPS cone
condition, which means that the FTIM must be kept on the surface
of the cone such that the gradient is constrained according to the
fictitious time integration path of the cone. When using the mini-
mum fictitious time step, the high-order Lie-group scheme can
preserve integration continuity and obtain the most computation-
ally efficient results.

The remainder of this paper is organized as follows. Section 2
illustrates the mathematical formulation of the FTIM and con-
structs the high-order explicit GLðn;RÞ Lie-group schemes. Five

Nomenclature

a a vector
b a vector
am the coefficient defined in Eq. (30)
bm the coefficient defined in Eq. (30)
A the coefficient matrix
L an n-dimensional vector field
U an n-dimensional vector field
R the set of real numbers
Rn an n dimensional Euclidean space
X a space–time domain
D a bounded domain in Rn

glðn;RÞ a real Lie algebra
GLðn;RÞ the general linear group
HðuÞ a nonlinear function
In an n-dimensional unit matrix
G an element of a Lie group
u the temperature distribution
S a heat source
t a temporal coordinate
x a spatial variable
y a spatial variable
z a spatial variable
t time
Dx the lattice spacing length of x
Dy the lattice spacing length of y
Dz the lattice spacing length of z
Dt a time increment
Ds a fictitious time increment
sm mDs
Êm the n-dimensional vector field defined in Eq. (35)

tf the final time
RðiÞ random numbers
r the noise level
m1 the number of subintervals in the time direction
m2 the number of grid points in each spatial direction

Greek symbols
e a given stopping criterion
Kk the variable coefficient defined in Eq. (23)
Hk the variable coefficient defined in Eq. (28)
W weighting factor
a a thermal conductivity coefficient
m a viscosity-damping coefficient
ub given boundary data
uf given final data
u0 given initial data

Subscripts and superscripts
i spatial grid numbers in the x direction
j spatial grid numbers in the y direction
k spatial grid numbers in the z direction
‘ grid number in the time direction
m index
b boundary condition
f final
0 initial
T transpose
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