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a b s t r a c t

A nonuniform heat generating model in a triangular area is built in this paper. Constructal optimizations
of the models with constant and discrete variable cross-sectional high conductivity channels (HCCs) are
performed by choosing minimum maximum temperature difference (MTD) as optimization objective.
Optimal constructs of the triangular element and triangular first order assembly (TFOA) are obtained,
respectively. The results indicate that for the TFOA with constant cross-sectional HCCs, the minimum
MTD is reduced by increasing the nonuniform heat generating (NUHG) coefficient p, namely the heat con-
duction performance (HCP) is better when more heat generation is generated near the heat sink. The HCP
of TFOA is also improved by increasing its complexity of internal structure. Furthermore, the minimum
MTD of TFOA with discrete variable cross-sectional HCCs is reduced by 12.57% than that with constant
cross-section. Therefore, the HCP of TFOA can be further improved by adopting discrete variable cross-
sectional structures for the HCCs. The optimization results obtained from numerical calculations can pro-
vide some theoretical guidelines for the optimal heat dissipation designs of electronic devices.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the fast development of science and technology, heat dis-
sipations of various thermal systems become more and more
prominent. Especially the designs of electronic component systems
are dedicated in the pursuit of low power consumption, high sta-
bility, ultra-miniaturization and high integration. Large quantities
of heat generations in the electronic components must be trans-
ferred timely and efficiently, if not, the performances of which will
be seriously worsen. Then, high conductivity channels (HCCs) can
be placed in electronic components to enhance heat dissipations,
which is viewed as a reliable approach to solve this tough problem.
Therefore, a suitable HCC placement to minimize the temperature
of electronic device is an important issue in the optimization of
heat conduction performance (HCP).

Constructal theory [1–14] is an emerging theory of heat transfer
optimization in 1990s, which provides new ‘‘geometric philoso-
phies” for the performance optimizations of various transfer pro-
cesses and systems. Recently, the allied fields of heat transfer
optimization and enhancement are making a formidable progress

according to Refs. [15–22]. Bejan [23] firstly conducted constructal
optimization of a rectangular heat generating volume choosing the
maximum temperature difference (MTD) as optimization objec-
tive, and obtained the optimal distribution of the HCCs. Ghodoossi
and Egrican [24] analyzed the ‘‘volume-point” heat conduction
problem in an exact way on the basis of abandoning the assump-
tion of heat flux linear distribution in the HCCs according to Ref.
[23], and derived an exact solution of optimal constructs for rect-
angular area. Wu et al. [25] studied the exact solution in-depth.
Wu et al. [26] re-optimized the distribution of HCCs, and further
decreased the thermal resistance of rectangular area by releasing
the constraint that ‘‘new order construct is composed of last order
optimal constructs”. Wei et al. [27] carried out an optimization for
rectangular area with discrete cross-sectional HCCs by utilizing
MTD minimization, and realized the further reduction of thermal
resistance. Ghodoossi and Egrican [28] analytically investigated
the temperature distribution in triangular area by adopting mini-
mumMTD as optimization objective, and obtained the correspond-
ing optimal constructs of triangular assemblies. Chen et al. [29] and
Xiao et al. [30] re-optimized the heat conduction problems in trian-
gular and disc-to-point areas without the constraint that ‘‘new
order construct is composed of last order optimal constructs”.
The results indicated that the MTDs of the two constructs were
reduced by 30.26% and 49.3%, respectively. Feng et al. [31,32]
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and Chen et al. [33] further performed the heat conduction con-
structal designs of triangular and disc-to-point areas at micro
and nanoscales, and obtained the corresponding optimal con-
structs, which were different from the case at conventional scale.
Moreover, some authors also investigated the heat conduction
problems based on finite element method [34–43] and entropy
generation objective [44–49], respectively.

The works of constructal optimizations for heat conduction
problems mentioned above are completely carried out on the con-
dition that the heat is generated uniformly, whereas the heat is
usually generated nonuniformly in practical electronic device. Cet-
kin and Oliani [50] established a new model of rectangular area
with nonuniform heat generating (NUHG), and theoretically ana-
lyzed the influence of the HCC distribution on the MTD of the area
by optimizing the angle of Y-shaped HCC. Feng et al. [51] proposed
a heat conduction model in a rectangular area with constant and
discrete variable cross-sectional HCCs by taking NUHG into
account. The optimal construct of rectangular area was achieved
in line with the optimization criterion of minimum MTD.

In this paper, based on Refs. [28,50,51], a heat conduction model
in a triangular area with NUHG will be established. Constructal
optimization of the triangular area will be carried out. The MTD
reflects the minimum thermal resistance, and it represents the
maximum temperature limitation in the heat generating area,
which is significant for the industrial design of electronic devices.
Therefore, the MTD will be chosen as optimization objective and
minimized by varying the shape of triangular area. Furthermore,
the minimum MTD of TFOA with discrete variable cross-sectional
HCCs will be obtained based on Refs. [28,50,51]. In addition, the
results obtained from constructal optimizations under different
conditions of heat generations and HCCs’ shapes will be compared.

2. Constructal optimization of triangular element

A triangular element (TE) with NUHG is shown in Fig. 1. The vol-
umetric heat generating rate (HGR) in the triangular area is
q000 � f ðx; yÞ. Meanwhile, the function f ðx; yÞ of HGR varies with the
location. The thermal conductivity of heat generating area is k0. A
HCC (thermal conductivity kp, width D0) is placed in the middle
of the area so as to enhance heat dissipation. The heat flux in the
k0 material is converged into the HCC, and next discharged into
the segment M0 (temperature Tmin). In addition, the remaining
outer boundaries of the area are entirely adiabatic. One hypothesis
is that the thermal contact at the interfaces between the HCC and
the heat generating area is perfect, and thus no temperature drop
at the interfaces. The length and height of TE are H0 and L0, respec-
tively, and its area A0 (¼ H0 � L0=2) remains constant. The area
fraction /0 of high conductivity material is defined as the ratio of

kp material to the TE, which is fixed as constant too. As for the
TE shown in Fig. 1, the area fraction is written as: /0 ¼ 2D0=H0.

According to Ref. [23], when the constraints of /0 << 1 and
H0=L0 << 1 are satisfied, the heat conduction direction in the k0
material can be assumed to be oriented in the direction of y axis,
while that in the kp material is approximately along the direction
of x axis. The partial differential equation of heat conduction in
the k0 material is

@2T
@y2

þ q000 � f ðx; yÞ
k0

¼ 0 ð1Þ

The boundary conditions for the heat generating area are

@T
@y

¼ 0; y ¼ yb ð2Þ

T ¼ Tðx;0Þ; y ¼ 0 ð3Þ
where Tðx;0Þ denotes the temperature distribution along the HCC,
and yb denotes the vertical ordinate of the points located on the
upper and lower borders of the TE, namely

yb ¼ �H0ðL0 � xÞ=ð2L0Þ ð4Þ
Based on energy balance principle, the partial differential equa-

tion in the HCC is

kpD0
d2T

dx2
þ 2

Z H0ðL0�xÞ=2L0

0
q000 � f ðx; yÞdy ¼ 0 ð5Þ

The boundary conditions for the HCC are

dT
dx

¼ 0; x ¼ L0 ð6Þ

T ¼ Tmin; x ¼ 0 ð7Þ
In order to obtain the temperature distribution of the TE, it is

assumed that the total heat generation is constant and the HGR
q000 � f ðx; yÞ is linearly reduced along x axis, i.e.,
q000 � f ðx; yÞ ¼ q000

0 ð0:05pþ 1� 0:15px=L0Þ, where q000
0 is the heat gener-

ating constant and p is the NUHG coefficient [50]. In addition, the
HGR is symmetrically distributed on the upper and lower sides of
the HCC. Specially, when p is equal to 0, f is equal to 1. In this case,
the current model of TE with NUHG in Fig. 1 is simplified to that
with uniform heat generation as investigated in Ref. [28].

Integrating Eqs. (1)–(3) leads to the temperature distribution in
the k0 material

Tðx; yÞ ¼ q000
0

k0
ð0:05pþ 1� 0:15p

L0
xÞ � y2

2
þ H0

2
y� H0

2L0
xy

� �
þ Tðx;0Þ ð8Þ

Integrating Eqs. (5)–(7) leads to the temperature distribution
along the HCC

Tðx;0Þ ¼ �q000
0

kpD0

0:15pH0

12L20
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2
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ð9Þ
Combining Eqs. (8) and (9) gives the temperature distribution in

the TE

Tðx; yÞ � Tmin ¼ q000
0
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Fig. 1. Triangular element with nonuniform heat generation.

J. You et al. / International Journal of Heat and Mass Transfer 117 (2018) 896–902 897



Download English Version:

https://daneshyari.com/en/article/7054617

Download Persian Version:

https://daneshyari.com/article/7054617

Daneshyari.com

https://daneshyari.com/en/article/7054617
https://daneshyari.com/article/7054617
https://daneshyari.com

