
Semi-analytic solution of three-dimensional temperature distribution in
multilayered materials based on explicit frequency response functions

Haibo Zhang, Wenzhong Wang ⇑, Shengguang Zhang, Ziqiang Zhao
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, PR China

a r t i c l e i n f o

Article history:
Received 23 March 2017
Received in revised form 25 October 2017
Accepted 29 October 2017

Keywords:
Multilayered materials
Heat conduction
Frequency response functions
Moving heat flux

a b s t r a c t

Multilayer coatings have been widely using in a wide range of applications, including industrial, biolog-
ical and electrical areas, and the thermal distribution in a multilayered material is of great interest. In
present paper, the frequency response functions (FRFs) of temperature field under unit point heat flux
are derived through thermal conduction equation. The unknown coefficients in the FRFs are assembled
in a linear system of matrix equations according to the heat input and continuity condition of heat flux
and temperature at each interface; then the coefficients are solved and expressed recursively. Based on
the closed-form solution of FRFs, a fast semi-analytical method (SAM) is developed to solve the three-
dimensional steady state heat conduction in arbitrary multilayered materials, and there are no limits
on the number or the thickness of layers. The temperature fields under different kinds of heat flux in mul-
tilayered coatings are studied. Moving heat flux and convection on the surface are also considered.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Coating/substrate system and functionally graded materials
(FGMs) are increasingly used in a wide range of applications to
improve the performance of critical components. For such materi-
als, the material properties vary along the depth direction. Used as
coatings or interfacial zones, multilayered materials and FGMs can
reduce the magnitude of residual and thermal stresses, mitigate
stress concentration and increase fracture toughness [1]. Many
experimental and numerical results have shown that a properly
controlled material property gradient in the FGM can lead to a sig-
nificant improvement in the resistance to contact deformation and
damage [2–5]. In practical applications, the thermal distribution in
multilayered materials is of great interest. For example, in mechan-
ical components, temperature shows significant effect on metallur-
gical microstructure, thermal shrinkage, thermal cracking, residual
stresses, and chemical modifications, which greatly influence the
performance and reliability of the components [6]. Besides, in the
applications of biological, electrical and building areas, the analysis
of thermal distribution in multilayered materials is also essential.

A series of research have been devoted to the simulation and
investigation of heat conduction in multilayered materials.
Although it is difficult to obtain the closed form analytical solu-

tions, thermal conduction in multilayer materials has been solved
analytically using various methods. Ozisik studied heat conduction
systemically [7], including one-dimensional composite medium.
Separation of variables is used much widely [8–13] while search-
ing for associated eigenvalues is the main challenge. Laplace and
Fourier transforms [14–18] are also important methods especially
for multi-dimensional and time-dependent heat conduction prob-
lem. Based on integral transform described by Carslaw [18], Maillet
et al. [19,20] developed the thermal quadrupoles method to solve
the heat transfer by the use of the electrical analogy in multiblock
structures commonly found in electrical circuits and packaged
devices, in which the transformed temperature-flux vector at one
boundary of the medium is linked to the corresponding output vec-
tor at the other boundary by a transfer matrix. For heat transfer in
multilayered materials, the transfer matrix is chain product of
matrices. When the model contains a large number of layers and
three dimensional temperature field is required, it may be time-
consuming due to the huge matrix operation. Similarly, Feuillet
et al. [21] applied Fourier transform and chain product of matrices
to solve the heat transfer in multiblock structure, while the bound-
ary surface should be discretized and iterative calculation is
necessary.

Besides, numerical method is increasingly used, including the
method of fundamental solutions [22], finite element method
(FEM), finite differences [23] or boundary element method (BEM)
[24,25]. For a detail description of studies in this subject one can
refer to the Ref. [12].
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In some cases, especially in mechanical elements, the heat
source is mainly from frictional contact and the region is usually
much small in comparison with the macro contacting body
dimensions, thus the assumption of a half-space with layers
may be much applicable; the three dimensional model studied
for multiblock structures with finite dimensions [9,10,19–21]
may be not suitable for tribological system because in this situ-
ation the discrete order at the boundary cannot be large due to
the matrix manipulation, while for rough surface contact com-
monly found in tribological system, much dense mesh grid is
needed to depict the heat source and to obtain the detailed tem-
perature distribution. Among the studies on multilayered half-
space, Shi [26] solved the temperature rise of two and three
dimensional single layered half-space through Fourier transform.
Particularly, Shi considered the effect of moving source; how-
ever, only single layer was involved in the study. The fundamen-
tal solution in frequency domain proposed by Simoes et al. [17]
presents the solution of three-dimensional multilayered half-
space under point heat source; however, the coefficient equa-
tions have to be solved at each point and when layer number
increases the computational efficiency will become much low.
Recently, Dias [27–29] proposed a novel conceptually simple
method to solve this problem through recursive images based
on the principle of superposition [18]. Although the convection
and thermal contact resistance are considered, the method is
limited to one-dimension problem up to now. Liu et al. [3]
solved the two-dimensional thermoelastic contact problem of
FGM, in which Fourier transform and matrix expression are used
to solve the temperature field.

It can be pointed out that the most studies have limits in
either dimensions or computational efficiency; and the number
of layers is also quite limited. The present study focuses on
the development of efficient method for solving the heat conduc-
tion in multilayered half-space with arbitrary number of layers.
It is of the great convenience for applications to develop explicit
expressions of the frequency response functions (FRFs) to avoid
the tedious numerical procedures [5]. Through the method of
FRFs, the stress and displacement fields in multilayered materi-
als have been obtained by [5,30,31]. In present paper, the
closed-form FRFs for steady-state temperature field in multilay-
ered materials are derived. It is in explicit recursive form,
instead of chain product of matrices or numerically solving a
set of equation; and there is no limit on layer number or thick-
ness. Then the influence coefficients are obtained through
inverse Fourier transform of the derived FRFs [32,33]. By com-
bining the influence coefficients with semi-analytical method
(SAM), which is based on superposition principle, the final tem-
perature rise field under arbitrary distribution of heat input can
be obtained. This is particular useful for the cases that the distri-
bution of frictional heat input is complicated when engineering

rough surfaces are considered. In present paper the temperature
solutions in FGM with different material designs are obtained
and the moving heat source and convection on the surface are
also considered. It is proven as a fast and accurate numerical
method validated with the results from analytical solutions, lit-
erature and FEM simulations.

2. Theoretical derivation

2.1. Temperature rise field in frequency domain

A half-space with L coatings is illustrated in Fig. 1, where the
coatings are indicated by j = 1,. . ., L, and the half-space is labeled
by L + 1. All the interfaces are perfectly bonded without heat loss.
Note that the origin of the z-axis in each layer is located on its
top surface.

The partial differential equation governing heat conduction is
given as follows for each layer j in its simplest form by [18],

r2TðjÞ ¼ � V
cj

@TðjÞ

@x
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where V is the velocity of heat flux at the top surface, T(j) is the tem-
perature rise and cj is the thermal diffusivity of the jth layer mate-
rial respectively.

At the top surface (z1 = 0), the heat flux is applied as follows
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Fig. 1. Schematic of a multilayered material under unit heat input, where the used
coordinate system and numbering of layers are defined.

Nomenclature

C influence coefficient obtained by FRFs
GðjÞ; sðjÞ; b intermediate variables
g dimensionless surface heat-transfer coefficient,

g = g⁄l /j
hj dimensionless thickness of layer j, hj = hj

⁄l
i pure imaginary,

ffiffiffiffiffiffiffi
�1

p
l characteristic length, [m]
L number of layers in multilayered material
M(j), N(j) the unknown coefficients in the FRFs for the jth layer
mx, ny the number of grids of computational domain along x

and y direction

Pe Péclet number, Pe = V⁄l/c
Q, Qn dimensionless heat input, Q⁄/q0; and the updated heat

input
S surface-heated region
T dimensionless temperature rise; T = T⁄j/(l�q0)
V velocity of moving heat flux, [m/s]
jj conductivity of layer j, W/(m K)
cj thermal diffusivity of layer j, [m2/s]
xx; xy; x variables in frequency domain corresponding to the x

and y, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þx2
y
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