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a b s t r a c t

The system of hyperbolic type differential equations is considered for non–Fourier heat transfer in thin
films and wires. Structures of the harmonic solutions for telegrapher equation and for Guyer–
Krumhansl equation are identified and compared with each other. The exact harmonic solution is
obtained; the influence of the phonon heat transfer is explored. The maximum principle violation is
demonstrated. Frequency dependence of the solution for Guyer–Krumhansl equation is shown. The exact
analytical solution is derived for the inhomogeneous ballistic–diffusion set of differential equations, gov-
erning heat propagation in thin films. The contribution of the ballistic, wave and diffusive heat transfer
components as well as the influence of the initial conditions and of the Knudsen number on heat conduc-
tion in thin films and wires are investigated. The cases of identical and different from each other Knudsen
numbers for ballistic and diffusive components are explored. The examples of exact solutions for the heat
transfer in each case are demonstrated.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Notwithstanding the rapid progress in computer methods and
common nowadays computer modeling of physical processes, this
is all the more necessary that machine based approach is comple-
mented by proved analytical solutions where possible. Analytical
solutions for a physical problem depend of the mathematical for-
mulation of the latter. Perhaps, the most common physical phe-
nomena met around is heat conduction. In most cases it is
basically described by the Fourier law @tT ¼ a@2

xT [1], which agrees
with experiment and observation in solid non-deformable bodies
at room temperature. However, deviations from Fourier law in
some crystal dielectrics occur at low temperatures <25 K, and Four-
ier law does not hold in low dimensional systems, such as thin
films and wires [2], and even in some highly inhomogeneous mate-
rials [3] at normal conditions. The important limitation of Fourier
law consists in the total lack of inertia, so that the temperature
change is instantly perceived everywhere in the body once it
occurs in one distant point. Already Maxwell indicated a second
order equation for heat conduction and Onsager [4] concluded that
Fourier law was no more than an approximate description of heat
conduction, which neglected the time, needed for the heat flow
acceleration. One of the most remarkable phenomena, which
stands out by its non-Fourier behavior, is the second sound [5], first

discovered in liquid Helium and then confirmed in solid crystals
[6–9]. It was described theoretically by phonon heat transfer. Cat-
taneo proposed the proper differential equation (DE), which reads
in terms of temperature as follows [10]:

s@2
t þ @t

� �
T ¼ kTr2T; ð1Þ

where kT is the heat conductivity, s is the relaxation time. Catta-
neo’s model supposes that heat propagates in media like damped
waves at finite speed v ¼

ffiffiffiffiffiffiffiffiffiffi
kT=s

p
, where s, being intrinsic property

of the media, specifies the delay between moments of the temper-
ature change and the heat flux reaction on it. This time represents in
fact the unit of heat inertia of the media and it can be viewed as the
characteristic time of phonon–phonon interactions. At normal con-
ditions it is very small, s � 10�13 s. The speed of the second sound v
specifies the heat wave propagation speed in matter exactly as the
sound wave does, while kT defines the heat diffusion. Hyperbolic
heat equation (HHE) with the constant term

@2

@t2
þ e

@

@t

 !
Fðx; tÞ ¼ a

@2

@x2
þ j

 !
Fðx; tÞ; e; a; j ¼ const; ð2Þ

is otherwise called the telegrapher’s equation as it describes the
electric signal propagation in long electric lines without emission
[11]. For heat conduction the following notations are common:
s ¼ 1=e, kT ¼ a=e, l ¼ j=e; in Cattaneo Eq. (1) l ¼ 0. We will
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though keep j– 0 for generality. It is profitable for applications as
we will see in what follows.

Cattaneo equation as well as telegrapher’s equation were solved
both analytically and numerically. Cattaneo equation in infinite
media with arbitrary boundary conditions was studied in [12]. Ana-
lytical solution of telegrapher’s equation with periodic boundary
conditions was found in [13,14]. Point–like heating of semi-
infinite one-dimensional string was analyzed in [15]; heat propaga-
tion after symmetric heating of thin film was studied in [16]; two-
dimensional problem for Cattaneo heat propagation in cylinder
was solved in [17]. Usually initial conditions are imposed on the
function and on its derivative: Fðx;0Þ and @tFðx;0Þ are given. Separa-
tion of variables is possible for hyperbolic heat equation [18,19]. The
obtained solution appears in the form of series of periodic functions.
Although HHE qualitatively describes second sound, it disagrees
quantitativelywithnumerousexperimentalmeasurements. Further
generalizations of the HHE emerged; one of themost common is the
Guyer–Krumhansl heat equation [20,21].

In our preceding publications [22,23,24] we derived integral
forms for some particular analytical solutions for HHE and for GK
type equations, and we considered special initial conditions. In this
paper we will obtain a more general harmonic solution for the
above types of equations and with its help we will investigate heat
conduction in such physically valuable system as thin film. Previ-
ously it has been shown that heat transport in a thin film is some-
what more complicated than just Cattaneo or pure Guyer–
Krumhansl heat conduction. Chen developed in [25,26] a model,
which involves free ballistic propagation of phonons. Lebon et al.
[27] derived partial differential equations that can substitute more
complicated Chen theory for heat transport in thin films and wires.
The new model of Lebon et al. actually arrives to inhomogeneous
system of partial differential equations (PDE), involving Guyer-
Krumhansl equation with a particular source term for the propaga-
tion of ballistic component; it was numerically solved in [27].
Complementing these studies, we will address in what follows heat
transport in a thin film and solve proper inhomogeneous system of
hyperbolic Guyer–Krumhansl type equations analytically, which
has not been done as yet. Moreover, we will explore the analytical
solution for physically valid range of Knudsen number, which plays
the key role in low dimensional systems, such as ultra thin films,
wires. We explore the structure of the harmonic solution
f ðxÞ / einx, which is important not only for radio–electric related
applications, but also for any function, expandable in Fourier ser-
ies. We compare such solution for telegrapher’s equation and for
Guyer–Krumhansl type equation, needed to solve the DE system
for thin films, and we demonstrate frequency dependence of the
heat conduction. We show the maximum principle non-
compliance for non–Fourier solutions, and the influence of the
phonon heat transfer, as well as the effect of the initial conditions
and of the Knudsen number on heat conduction in thin films.

2. Evolution of the harmonic solution for hyperbolic heat
equation

By means of exponential differential operators the exact solu-
tions were obtained for a variety of differential equations, includ-
ing extended forms of Fourier equation [22,28–30] and other
heat conduction equations as well as other second order DE
[23,30–33]. For the second order DE of the following type:

@2

@t2
þ eðxÞ @

@t

 !
Fðx; tÞ ¼ bDðxÞFðx; tÞ; ð3Þ

where bDðxÞ is the differential operator, acting on the coordinate x,
we obtain with the help of Laplace transforms the following partic-
ular solution:

Fðx; tÞ / Ce�
t
2êðxÞ t

4
ffiffiffiffi
p

p
Z 1

0

dn
n
ffiffiffi
n

p e�
t2
16ne�nê2ðxÞe�4nbDðxÞf ðxÞ; ð4Þ

provided the integral converges. The integral involves the action of
the exponential differential operators on the initial condition
Fðx;0Þ ¼ f ðxÞ, where C is a constant, determined from the other ini-

tial condition. For the operator bDðxÞ ¼ a@2
x þ j the particular solu-

tion for the telegrapher’s equation (2) emerges. The particular
solution (4) for the DE (2), vanishing at t ! 1 on semi-infinite axis,
was studied for a number of initial functions f ðxÞ in [23,24]. In the
more general case we must consider the following solution:

Fðx; tÞ ¼ e�
te
2 e�

t
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þ4bDðxÞ

p
C1ðxÞ þ e

t
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þ4bDðxÞ

p
C2ðxÞ

� �
; ð5Þ

where bDðxÞ ¼ a@2
x þ j and C1;2ðxÞ are determined by the initial or

boundary conditions. In some cases the second branch of the solu-
tion can be obtained by substituting simultaneously
t ! �t; e ! �e; d ! �d in (4) (see [34]). In what follows we con-
sider the example of the harmonic solution / einx (5) for Eq. (2),
which can be used to construct the exact solution for any function,
expandable in Fourier series or integrals. In particular, it is possible
to apply it for the initial Dirac d-function or Gaussian in order to
describe analytically typical for heat conductivity measurements
heat pulse propagation [35]. This application, however, remains
beyond the scope of the present paper and will be addressed in ded-

icated forthcoming publications. The action of the operator et@
2
x was

studied in [36–38]; The exponential differential operator ebDðxÞ does
not add new harmonics to those, existing at the moment t ¼ 0. In
the harmonic ansatz / einxYðtÞ PDE (2) reduces to simple ODE:

Y 00ðtÞ þ eY 0ðtÞ ¼ ð�an2 þ jÞYðtÞ: ð6Þ
Consider, for example, the following Cauchy conditions:

Fðx; tÞjt¼0 ¼ Geinx; @Fðx; tÞ=@tjt¼0 ¼ Beinx: ð7Þ
Following [28], we obtain the exact harmonic solution for the

telegrapher’s Eq. (2)

Fðx; tÞjFðxÞ/einx ¼ B1einx�
t
2ðeþ

ffiffiffi
V

p
Þ þ B2einx�

t
2ðe�

ffiffiffi
V

p
Þ; V

¼ e2 þ 4ðj� an2Þ; ð8Þ
where we relate the coefficients B1; B2 to the initial conditions at
t ¼ 0: B1 þ B2 ¼ G and B1ðeþ

ffiffiffiffi
V

p Þ þ B2ðe�
ffiffiffiffi
V

p Þ ¼ �2B. This yields
the following explicit expressions for them:

B1 ¼ �2Bþ Gð�eþ
ffiffiffiffi
V

p
Þ

2
ffiffiffiffi
V

p ; B2 ¼ 2Bþ Gðeþ
ffiffiffiffi
V

p
Þ

2
ffiffiffiffi
V

p : ð9Þ

For the telegrapher’s equation applied to the electric circuit, its
solution has the meaning of an electric current evolution; in the
context of heat conduction the initial conditions must be real
and the solution describes the space–time heat distribution. The
validity of the solution can be easily verified by its substitution
in Eq. (2) with account for (7). Dependently on the values of the
parameters a, e, j, and on the initial conditions, the value of the
quantity V, which depends on the harmonic number n, can be neg-
ative and the coefficients B1; B2 can be complex. Some examples of
solutions to the telegrapher’s equation with different from each
other initial conditions are given in Figs. 1–3.

In the considered example of the telegrapher’s equation with a
= 7, j = �0.5, e = 11, n = 1, B = 1, with initial conditions Fjt¼0 ¼ einx,
@F=@tjt¼0 ¼ �5einx we have V = 91 and for G = 5, F ¼
�0:6007e�10:2697tþix þ 1:6007e�0:730304tþix (see. Fig. 1 left), while for
G = �5 in Fig. 1 on the right, F ¼ 0:447586e�10:2697tþixþ
0:552414e�0:730304tþix. If the initial derivative is positive, as shown
in Fig. 1 left, the maximum principle, which states that the solution

K. Zhukovsky / International Journal of Heat and Mass Transfer 120 (2018) 944–955 945



Download English Version:

https://daneshyari.com/en/article/7054690

Download Persian Version:

https://daneshyari.com/article/7054690

Daneshyari.com

https://daneshyari.com/en/article/7054690
https://daneshyari.com/article/7054690
https://daneshyari.com

