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a b s t r a c t

A new solution for the three-dimensional transient heat conduction from a homogeneous medium to a
non-homogeneous multi-layered composite material with temperature dependent thermal properties
using a mesh-free Monte-Carlo method is proposed. The novel contributions include a new algorithm
to account for the impact of thermal diffusivities from source to sink in the calculation of the particles’
step length (particles are represented as bundles of energy emitted from each source), and a derivation
of the three-dimensional peripheral integration to account for the influence of material properties around
the sink on its temperature. Simulations developed using the proposed method are compared against
both experimental measurements and results from a finite element simulation.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Monte-Carlo method (MCM) is prominent for its ability to
tackle complex simulation problems based on random number
generation. Numerical solutions based on finite difference and
finite element methods have been conventionally adopted for solv-
ing multi-dimensional heat conduction problems, although some
issues remain problematic with these approaches. For instance,
the stability criterion in the explicit finite difference method limits
the time step to the grid size. Implicit approaches [1] are used in
the majority of linear solvers and FEM packages due to their
numerical stability. Implicit applications convert the problem’s
geometry to a grid of small elements that lead to a matrix that
must be solved by inversion to obtain the result at each time incre-
ment. Complex geometries that require small grid size lead to large
matrices and therefore larger computational and memory require-
ments: inversion of large assembly matrices is time consuming.
This becomes a significant practical consideration in problems
with complex geometries and Multiphysics problems [2]. By con-

trast, Monte-Carlo methods have significant advantages relative
to these methods [3]. First, there is no requirement to build an
assembly matrix and consequently no need for matrix inversion.
Second, the solution at a desired point in the domain can be
obtained independently from the solutions at other points within
the domain. These features lead to a significant reduction in simu-
lation time by solving for specific regions of interest, instead of
solving for the entire domain, which requires inversion of the
entire assembly matrix. Inverse heat conduction (the prediction
of surface temperature and heat flux using the time history of tem-
perature at internal points in the domain) is another important
problem that benefits from this feature [4]. Third, the Monte-
Carlo approach is stable and very well suited for parallel comput-
ing, which is particularly attractive with the advent of GPU engines
[2]. Apart from the aforementioned general advantages, using ran-
dom parameters in MCM makes it a powerful approach to model
problems with inherited random or stochastic behaviors or param-
eters. For instance porosity in porous media can be defined as a
random parameter [5–9], making MCM an excellent option for
simulation.

The Monte-Carlo method was first described in 1949 [10] by
Metropolis and Ulam as a statistical approach for solving integro-
differential equations. In heat conduction, Haji-Sheikh and
Sparrow [11] described the application of MCM to solve heat
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conduction problems with homogenous isotropic material proper-
ties for different types of boundary conditions. Other studies have
used [11] to develop methods to solve conduction heat transfer
problems where thermal properties are not isotropic, as in com-
posite layered materials. The fixed random walk MCM was modi-
fied [12,13] to solve transient heat conduction in anisotropic
media. The necessity of a grid to define the geometry is a disadvan-
tage of the fixed random walk method, compared to floating ran-
dom walk. Non-homogeneity of thermal properties in a heat
conduction domain has been shown in [14] by relating the impact
of the non-homogeneity on the temperature distribution in pro-
portion to the thermal diffusivity of source and sink. In cases with
abrupt changes in thermal diffusivity, such as at cryogenic temper-
atures or in composite layered materials, the aforementioned
approach of proportion leads to significant error. This paper pre-
sents a novel solution for transient heat conduction in anisotropic
materials with abrupt changes in thermal diffusivity based on
MCM.

2. Formulation

Heat transfer process describes the transmission of an energy
bundle (particle in this study) from source to sink. In a reverse
approach, one can use the known thermal properties of the sink
to estimate the sources that can transfer energy to the sink in a cor-
responding time span. The domain is filled with K uniformly gen-
erated points that represent sinks with known initial conditions
that define the temperature at each point. The solution process
starts by emitting J particles from each sink to find the location
of the sources, which could be anywhere within or beyond the
boundaries of the domain and not necessarily on the sink locations.
If the source location falls inside the domain, the temperature at
that location can be interpolated using the known temperatures
of neighboring points from the previous time step. The scattered
interpolation uses four closest neighboring points. Otherwise, the
following boundary conditions apply for particles falling on or out-
side of boundaries at each time step. First, a fixed temperature
boundary condition: particles adopt the pre-assigned fixed tem-
perature of the boundary. Second: Insulation boundary condition:
particles adopt the temperature of the sink. Third: convection
boundary condition, has not been considered in this paper. Other
studies [15,16] have proposed methods for taking the convective
boundary condition into account. Three-dimensional conductive
heat transfer in a domain with homogeneous thermal diffusivity
(as described in [11]) presents the method to estimate source loca-
tions. From the three dimensional heat conduction relation in
spherical coordinates ([17,18]) one can find the temperature at
the sphere’s center as:
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Eq. (1) illustrates the integral form for the temperature at the
sphere’s center based on the known temperature of particles emit-
ted from its vicinity. Eqs. (2) and (3) describe the probability func-
tions of angles h and u, respectively. The time step s and
steplength r of each floating random walk are related to the ther-

mal diffusivity a at each point by the probability function (4):
the higher the thermal diffusivity, the longer the step length (or
the shorter the required time step). The inverse functions for Eqs.
(2)–(4) [19] are: Eq. (7) is obtained from a fit function on inverse
of Eq. (4).
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RN in Eqs. (5)–(7) denotes uniform random numbers generated
from a Halton sequence (uniformly distributed random numbers)
in three different sets. Table 1 shows the values of the D coefficients
in these equations [19].

Fig. 1 depicts the inverse of the probability function Hð3Þ, where
the random number RN3 from the Halton sequence is the abscissa
and the ordinate value is as

r2 . With the known thermal diffusivity of
sink a and time step s, the steplength r can be calculated.

By calculating the angles and steplength as described above,
one can calculate the location of the source using Eq. (8). Once
the source location is defined, the temperature at that location is
allocated to the particle emitted from the respective source. The
sink’s temperature is simply the average of the temperature of par-
ticles as shown in Eq. (9), where j is the index for the particle num-
ber of J particles, t the time step and k the index for point number
out of a total of K points [11]:
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yj ¼ yk þ rj sinðhjÞ sinðujÞ
zj ¼ zk þ rj sinðhjÞ

ð8Þ
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Fig. 2 depicts J ¼ 20 particles emitted from the source and
absorbed by the sink at the center of the sphere. The location of
the sources is calculated using the aforementioned approach.

The above equations cover the solution of diffusion problems in
homogenous media. Tackling problems in non-homogenous media
needs further modifications. First, the thermal diffusivity of and
between the source and the sink are not equal; therefore, the ste-
plength calculated from the sink using its thermal diffusivity will
not be equal to the steplength calculated from the sourceusing its dif-
fusivity. This affects the reversibility of the particle transport
describedbefore: reversibility isnot valid innon-homogenousmedia.

A new algorithm is needed that takes into account the change in
thermal diffusivity between source and sink. One approach is to
take very small time steps, leading to steplengths small enough
to approximate the thermal diffusivity of source and sink as equal.
This has some disadvantages: assuming equal thermal diffusivity
introduces error, and the approximation is not applicable close to
the boundaries in composite layered materials, where thermal dif-
fusivity experiences an abrupt change. Also, acquiring results for
desired times requires more iterations due to the smaller time
steps, which increases simulation time.

Knowing the thermal diffusivity function enables methods to
address the aforementioned issue for non-homogenous media
[20,21]; however this may lead to error in case of sharp changes
in diffusivity due to the use of derivatives. Refs. [22] shows the
required modifications to the two-dimensional Monte-Carlo tran-
sient heat conduction equations in cylindrical coordinates that lead
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