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a b s t r a c t

One-dimensional heat conduction process in the cylindrical coordinate is investigated, and a similarity
type of general solution is developed using the Kummer functions. The limiting behaviors of the general
solution are studied using the properties of the Kummer functions, and some useful identities are
deduced. As applications of the general solution, an infinite line source problem under power-type initial
and boundary conditions and a one-phase Stefan problem with space-dependent latent heat in the cylin-
drical coordinate are studied. The analytical solutions for these two problems are established using the
general solution directly. Computational examples for the analytical solutions are presented. For the infi-
nite line source problem, the computational results are compared with those of the solid cylindrical sur-
face model, and the computational error caused by neglecting the radial dimension of the heat source
under time-varying source intensity is investigated. For the one-phase Stefan problem, both the coeffi-
cient in the solution and the development of the temperature field are presented; the computational
results can be used to verify the accuracy of numerical solutions for Stefan problems.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Analytical solutions for heat conduction problems have many
applications. First, most of the analytical solutions are also exact
solutions, thus they can be used to verify the accuracy of the
numerical solutions or other approximate solutions [1–3]. Sec-
ondly, analytical solutions present explicit formulas for the tempo-
ral and spatial development of the temperature field; these explicit
formulas are more advantageous to the theoretical analysis of the
physical process, and they may also be used as building blocks for
some numerical methods such as the unsteady surface element
method [4]. Thirdly, analytical solutions are more attractive than
the numerical solutions in the realm of the inverse problem anal-
ysis [5], since the solution process of the inverse problem is more
convenient using the analytical solutions. Traditional methods for
measuring the material thermal conductivity such as the hot wire
method and the hot disk method are all designed on the basis of
the inverse problem analysis using corresponding analytical solu-
tions [6].

There are several mathematical methods that can be used to
establish analytical solutions for heat conduction problems. The
separation of variables technique (SVT) is a widely-used method.
The SVT presents a series form of general solution for the heat con-
duction equation, and each term in the series is a product of several
univariate functions. Basic solutions obtained from the SVT can be
found in the monographs [6,7]. Beck et al. [8] indicated the issue
concerning the convergence of the series and made some improve-
ments. For complex situations such as multi-dimensional multi-
layer bodies, the SVT is also applicable [9]. Green’s function
method is another one of these mathematical methods; the
method treats the internal heat source, the initial and boundary
conditions as heat sources depending on time and space. The solu-
tion for the problem is obtained by integrating the Green’s function
with respect to time and space, and the Green’s function is the
temperature response induced by a unitary instantaneous point
source in the corresponding geometry. The application of the
Green’s function method is systematically summarized in the
monograph [4]. Integral transforms such as the Fourier transform,
the Laplace transform can also be used to develop analytical solu-
tions for heat conduction problems; however, the inverse transfor-
mation has to be conducted numerically in most situations, and it
is a shortage of the integral transformation method [6,7].
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The similarity transformation method (STM) is developed based
on the group theory, and it is essentially an application of the Lie
groups to the heat conduction equation. The STM transforms the
partial differential equation (PDE) of the heat conduction problem
to an ordinary differential equation (ODE), and the solution for the
heat conduction equation can be obtained from the solution of the
ODE. For the heat conduction problem in a semi-infinite region
under constant surface temperature or surface flux, the analytical
solutions obtained from the STM can be found in the monographs
[6,7]. Zahin [10] studied the heat conduction problem in a semi-
infinite region under power-type initial and boundary conditions,
and developed an analytical solution using the STM. For one-
dimensional heat conduction process in the cylindrical coordinate,
the analytical solution for Kelvin’s line source model is established
by the STM [6,7]. On the other hand, the STM is also widely used in
the realm of the Stefan problem [11–13], which originates from the
heat conduction process with phase change. The applications of the
STM in recently proposed Stefan problems are summarized in
Section 4.

Although many analytical solutions for heat conduction prob-
lems have been obtained using the STM, the application of the
STM in the cylindrical coordinate has not been thoroughly investi-
gated. In this paper, the main objective is to develop a similarity
type of general solution for the one-dimensional heat conduction
equation in the cylindrical coordinate system. After that, the gen-
eral solution is applied to establish analytical solutions for two
practical heat conduction problems. One problem is the infinite
line source problem with power-type initial and boundary condi-
tions, which is usually encountered during the application of the
ground-coupled heat pump system. The other problem is the
one-phase Stefan problem with power-type latent heat in the
cylindrical coordinate, which describes a special case in the appli-
cation of the artificial ground freezing technique. Computational
examples for these two applications are also presented and
discussed.

2. Similarity type of general solution

2.1. Solution procedure

The governing equation for the one-dimensional heat conduc-
tion process in the cylindrical coordinate can be written as
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in which T is the temperature, r is the cylindrical coordinate, t is the
time, and a is the thermal diffusivity of the material.

Eq. (1) is invariant under following group of similarity transfor-
mations [14]et ¼ e2t; er ¼ er; eT ¼ eaT ð2Þ
in which e, a are group parameters (a is non-negative).

From Eq. (2), we can deduce two invariants of the group
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Using Eq. (3), the PDE presented in Eq. (1) can be transformed to
the following ODE
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We introduce a new variable z defined by

z ¼ �n2 ð5Þ
Using the variable z, Eq. (4) can be further transformed to
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The detailed deduction process for Eqs. (4), (6) is shown in
Appendix A.

Eq. (6) is in the form of Kummer’s equation, and the general
solution for this equation can be written as [15]
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in which A, B are coefficients, i ¼
ffiffiffiffiffiffiffi
�1

p
, and ph(z) is the argument

of z.
The definition of the Kummer function U(p, q, z) introduced in

[16] is not applicable for Eq. (7), sinceq = 1will lead to the evaluation
of the gamma function at undefined values such as 0. The definition
of U(p, q, z) for the situation q = 1, 2,. . . should be written as [15]
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in which Cð�Þ is the gamma function, wð�Þ is the digamma function,
the Pochhammer symbol and the binomial coefficient are defined
by

ðpÞl ¼
Cðpþ lÞ
CðpÞ ¼ pðpþ 1Þ . . . ðpþ l� 1Þ; ðpÞ0 ¼ 1 ð10Þ
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From Eqs. (3), (5), (7), the similarity type of general solution for
Eq. (1) can be deduced
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2.2. Some properties of the solution

When neither p nor p � q + 1 is a non-positive integer,
U(p, q, z) can be related to the generalized hypergeometric function
[15]

Uðp; q; zÞ ¼ z�p
2 F0ðp;p� qþ 1;�;�z�1Þ ð13Þ

For the generalized hypergeometric function, there is

lim
z!12

F0ðp; p� qþ 1;�;�z�1Þ ¼ 1 ð14Þ

From Eqs. (13), (14), the following equation can be deduced
(neither p nor p � q + 1 is a non-positive integer)

lim
z!1

zpUðp; q; zÞ ¼ 1 ð15Þ

For the Kummer function U(p, q, z) used in Eq. (12), p � q + 1
equals p since q = 1. If p = p � q + 1 is a non-positive integer, then
it can be deduced from the definition of U(p, q, z) presented in
Eq. (9) that Eq. (15) is still correct.
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