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a b s t r a c t

This paper introduces an indirect adaptive fuzzy controller as a power system stabilizer used to damp
inter-area modes of oscillation following disturbances in power systems. Compared to the IEEE standard
multi-band power system stabilizer (MB-PSS), indirect adaptive fuzzy-based stabilizers are more efficient
because they can cope with oscillations at different operating points. A nominal model of the power
system is identified on-line using a variable structure identifier. A feedback linearization-based control
law is implemented using the identified model. The gains of the controller are tuned via a particle swarm
optimization routine to ensure system stability and minimum sum of the squares of the speed deviations.
A bench-mark problem of a 4-machine 2-area power system is used to demonstrate the performance
of the proposed controller and to show its superiority over other conventional stabilizers used in the
literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

An interconnected power system, depending on its size, has
many modes of oscillations [1]. In the analysis and control of sys-
tem stability, two distinct types of system oscillations are usually
recognized. One type is associated with units at a generating sta-
tion swinging with respect to the rest of the power system. Such
oscillations are referred to as local plant mode of oscillations. The
second type of oscillations is associated with the swinging of many
machines in one part of the system against machines in other parts.
These are referred to as inter-area mode of oscillations. The basic
function of power system stabilizers (PSSs) is to add damping to
both types of system oscillations and to enhance the overall stabil-
ity of the power system over a broad range of operating conditions
and disturbances.

Conventional PSSs (CPSSs) [1] use transfer functions designed
for linear models representing the generators at a certain operating
point. However, as they work around a particular operating point
of the system for which these transfer functions are obtained, they
are not able to provide satisfactory results over wider ranges of
operating conditions.

Considerable efforts have been directed towards developing
adaptive PSS, e.g. [2]. The basic idea behind adaptive techniques is to
estimate the uncertainties in the plant on-line based on measured
signals [3]. However, adaptive PSSs deal with systems of known
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structures. Furthermore, adaptive controllers cannot use human
experience which is expressed in linguistic descriptions. This prob-
lem is overcome using artificial intelligence (fuzzy logic, neural
networks, and decision trees)-based techniques for the design of
PSSs.

Fuzzy systems work with a set of linguistic rules, which are put
down by experienced operators. It is a model-free approach, which
is generally considered suitable for controlling imprecisely defined
systems [4,5]. In Fuzzy control, the controller is synthesized from
a collection of fuzzy If-Then rules which describe the behavior of
the unknown plant. Fuzzy logic systems provide nonlinear mapping
from an input data vector space into a scalar output space, which are
general enough to perform control and identification of nonlinear
systems.

The authors have proposed an (indirect adaptive fuzzy)-based
power system stabilizer for a multi-machine power system in [6].
This power system stabilizer consists of a fuzzy identifier for a non-
linear synchronous machine and a feedback linearization controller
to damp frequency oscillations. This technique suffers a robust-
ness problem due to the integration of the updated parameter. In
[7] a design of a hierarchical fuzzy logic PSS for a multi-machine
power system is introduced. The scaling factors of the fuzzy con-
troller are tuned automatically as the operating conditions of
power system change. These scaling parameters are the output
of another fuzzy-logic system (FLS), which obtains its inputs from
the operating condition of the power system. An online adaptive
neuro-fuzzy power system stabilizer for multi-machine power sys-
tems is derived in [8]. This system is divided into two subsystems, a
recursive least square identifier with a variable forgetting factor for
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the generator and a fuzzy logic based adaptive controller to damp
oscillations. An adaptive power system stabilizer using on-line self-
learning fuzzy systems is proposed in [9]. The authors present a
new adaptive fuzzy power system stabilizer which consists of an
identifier to estimate the power system. The identifier is trained
by recursive least square algorithm and the fuzzy logic controller
is trained by a steepest descent algorithm to damp the oscillations.
The steepest descent algorithm to train fuzzy logic controller suf-
fers the possibility of being slow as it could get trapped in local
minima [9].

In this paper, an indirect adaptive fuzzy power system stabilizer
is proposed. The stabilizer’s control law is determined as a function
of the error in the plant’s output (generator speed deviation) and
the output of a fuzzy identifier. Actual speed and actual speed devi-
ation of the associated generator are taken as inputs to the fuzzy
identifier. These inputs to the identifier are obtained online and
assumed to be measured from the output of the plant. The output
of the fuzzy identifier is the estimate of the unknown nonlinearities
of the model. These are used in a feedback linearization framework
to provide the necessary damping to the power system.

The paper proceeds as follows. In Section 2, a basic idea of
variable-structure adaptive fuzzy control used in this paper is pre-
sented. In Section 3, the proposed identification and control design
procedure is given. In Section 4, an overview of particle-swarm
based optimization is given with the procedure to optimally com-
pute the controller gains. In Section 5, a description of the test
system is given. In Section 6, the simulation results that demon-
strate the effectiveness of the proposed controller are presented
and compared with those of the conventional controller using the
4-machine 2-area bench-mark test power system. Conclusions are
stated in Section 7.

2. Basic idea of variable-structure adaptive fuzzy control

Consider the class of nonlinear systems described by

y(r) = f (x) + g(x)u (1)

where f(·) and g(·) are unknown real continuous nonlinear func-
tions, u ∈ R and y ∈ R are the input and the output of the system,

respectively. x = (x, ẋ, . . . , x(n−1))
T ∈ Rn is the system state vector,

and y(r) is the rth derivative of the output y. It is assumed that
g(x) /= 0 for all values of x and is bounded in the compact set.

System (1) can also be represented using state-space modeling
as

ẋ = Ax + b(f (x) + g(x)u)

with

A =
[

0(n−1)×1 I(n−1)×(n−1)
0 01×(n−1)

]
, b =

[
0(n−1)×1

1

]
.

Only x and u are available for measurements. The output signal y is
required to follow a desired-output signal ym.

If f and g were known, a feedback linearization technique could
be used to derive the required control law [11]. The feedback con-
trol law would be

u = 1
g(x)

[−f (x) + y(r)
m + kT e1], (2)

where e1 = [e1, ė1, . . . , e1
(r−1)]

T
, e1 = ym − y is the tracking error.

k = [kr, . . . , k1]T is the vector of design parameters. The design
parameters should be selected such that the roots of the charac-
teristic equation sr + k1sr−1 + · · · + kr = 0 are in the left-hand side
of the s-plane to ensure stability [10]. In this paper, particle swarm
optimization (PSO) technique is used to search for the optimum
values of the design parameters ki, i = 1, 2, . . ., r.

Since the functions f and g are unknowns, an identifier is imple-
mented to derive some fuzzy mappings f̂ (x/�f ) and ĝ(x/�g) that
are estimates of the functions f and g, respectively. These fuzzy
mappings are function of x and are parameterized in terms of the
vectors �f and �g . The vectors �f and �g correspond to the cen-

troids of the consequents of the fuzzy mappings f̂ (x/�f ) and ĝ(x/�g),
respectively.

We use a series-parallel identification model [12],

˙̂x = −˛x̂ + ˛x + f̂ (x/�f ) + ĝ(x/�g)u, (3)

where ˛ is a positive design parameter that determines the
dynamics of the identifier error model. The parameter is chosen
heuristically with a guideline that increasing the parameter speeds
up the estimator convergence and reduces the final error. However,
this could come at the expense of increased sensitivity to unstruc-
tured uncertainties and measurement noise [13]. The goal of the
identification scheme is to determine an adaptive law to compute
the parameter vectors �f and �g such that all the signals in the iden-
tification model must be uniformly bounded and the error x − x̂ is
as small as possible.

Based on the design algorithm given in [12,13], we choose
f̂ (x/�f ) and ĝ(x/�g) to be fuzzy systems characterized by the sin-
gleton fuzzifier, the center average defuzzification, the product
inference and the Gaussian membership function. As such, it is
possible to represent f̂ (x/�f ) and ĝ(x/�g) as

f̂ (x/�f ) = �T
f p(x) (4)

ĝ(x/�g) = �T
g p(x) (5)

where

p(x) = [p1(x) . . . pk(x) . . . pM(x)]T

�f = [�1
f . . . �k

f . . . �M
f ]

T

�g = [�1
g . . . �k

g . . . �M
g ]

T
.

pk(x) is called the fuzzy basis function (FBF) and is given by,

pk(x) =

∏n
i=1�

Fji
i

(xi)∑m1
j1=1· · ·

∑mn

jn=1

∏n
i=1�

Fji
i

(xi)
(6)

where �
Fi

ji (xi) is the membership function assigned to the jth lin-

guistic variable in the jth rule.
Collect the pk(x)s into vector p(x), �k

f
s and �k

gs into vectors �f and

�g , respectively. Let e2 = x − x̂, then the unknown parameters are
updated according to [11,12] as

�̇f = �f eT
2bp(x) (7)

�̇g = �ge2bp(x)u, (8)

where � f and � g are diagonal matrices.
Practically, (7) and (8) lead to a robustness problem due to the

integration of �f and �g . Techniques such as projection algorithm
and sigma modification are used to improve the system response
by avoiding the robustness problem. In [13,14], a – free of integra-
tion – variable structure algorithm that does not suffer robustness
problems is presented. From [13,14], the ith element of �f and �g
are, respectively, given by

�i
f = −�

i
f sat[(x − x̂)T b] + �i

f (0) (9)
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