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a b s t r a c t

In this article, a new time two-mesh (TT-M) finite element (FE) method, which is constructed by a new
TT-M algorithm and FE method in space, is proposed and analyzed. The numerical theories and algorithm
are shown by solving the fractional water wave model including fractional derivative in time. The TT-M
FE algorithm mainly covers three steps: firstly, a nonlinear FE system at some time points based on the
time coarse mesh DtC is solved by an iterative method; further, based on the obtained numerical solution
on time coarse mesh DtC in the first step, some useful numerical solutions between two time coarse mesh
points are arrived at by the Lagrange’s interpolation formula; finally, the solutions on the first and second
steps are chosen as the initial iteration value, then a linear FE system on time fine mesh DtF < DtC is
solved. Some stable results and a priori error estimates are analyzed in detail. Furthermore, some numer-
ical results are provided to verify the effectiveness of TT-M FE method. By the comparison with the stan-
dard FE method, it is easy to see that the CPU time can be saved by our TT-M FE method.

� 2017 Published by Elsevier Ltd.

1. Introduction

Fractional partial differential equations (FPDEs) have been
found in the fields of engineering and science. In view of the diffi-
culty for solving the analytic solutions, increasing scholars have
started to study some effective numerical methods for solving
complex FPDEs with time, space and space-time fractional deriva-
tives, which include finite difference methods [1–14], FE methods
[15–26], DG methods [27–30], spectral methods [31–35], finite
volume (element) methods [36–38], meshless methods [39], wave-
lets method [40], collocation method [41], reproducing kernel
algorithm [42] and so forth.

In these mentioned numerical methods, FE methods play a sig-
nificant role in finding the numerical solutions for three classes of
FPDEs. So far, many researchers have given FE studies for FPDEs
such as space FPDEs (Ma et al. [17] for space fractional differential
equations; Zhang et al. [18] for symmetric space-fractional partial
differential equations; Roop [23] for space fractional advection dis-
persion problem; Bu et al. [25] for Riesz space fractional diffusion
equations; Zhao et al. [43] for space-fractional advection-
dispersion equations; Zheng et al. [44] for space-fractional

advection diffusion equation; Zhu et al. [45] for the Riesz space-
fractional Fisher’s equation), time FPDEs (Li et al. [16] for maxwell’s
equations with time fractional derivative; Jin et al. [19] for frac-
tional order parabolic equations; Ford et al. [22] for time FPDEs;
Liu et al. [24] for a time-fractional fourth-order problem; Zhuang
et al. [46] for the fractional cable equation; Liu et al. [47] for a non-
linear time-fractional reaction-diffusion problem with fourth-
order derivative) and space-time FPDEs (Li et al. [15] for nonlinear
subdiffusion and superdiffusion equation with space-time frac-
tional derivatives; Liu et al. [48] for space-time fractional diffusion
equation; Deng [49] for the space and time fractional Fokker-
Planck equation; Li and Huang [50] for the time-space fractional
diffusion-wave equation). In addition to the researches on FE
method for FPDEs, recently, finite element methods with two-
grid algorithms [51,52] are developed for a nonlinear reaction-
diffusion problem with time-fractional derivative and fourth-
order derivative [53] and a nonlinear Cable equation with time-
fractional derivative [54]. As there are a large number of literatures
on FE methods’ applications in solving FPDEs, we cannot list
them all.

In this article, motivated by spatial two-grid method presented
by Xu [51,52], we propose a new time two-mesh (TT-M) FE algo-
rithm holding the advantage of saving CPU time, which includes
three main computing steps: firstly, we construct a nonlinear FE
system at some time points based on the time coarse mesh DtC ,
then solve this nonlinear system by an iterative method; further,
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we use interpolation formula to give useful points between any
two points obtained time coarse mesh solution on the first step;
finally, based on the initial iterative value computed time coarse
mesh solutions, we establish a linear iterative scheme with time
fine mesh DtF , then obtain TT-M solutions.

Here, we apply the new TT-M FE algorithm to solving the non-
linear time fractional water wave model [31,56]
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with boundary condition

uðxL; tÞ ¼ uðxR; tÞ ¼ 0; t 2 J; ð1:2Þ
and initial condition

uðx;0Þ ¼ u0ðxÞ; x 2 X; ð1:3Þ
where f ðuÞ ¼ u2=2; J ¼ ð0; T� is the time interval with the positive
constant T;X ¼ ½xL; xR�ð� RÞ is the spatial domain. u0ðxÞ is the initial
function, the coefficients a > 0;b > 0; c > 0; m P 0 are given con-
stants. In particular, when the coefficient m is taken as 0, the time
fractional water wave model (1.1) can be transformed into impor-
tant RLW-Burgers equation. As said by Kakutani and Matsuuchi in
[55], the fractional water wave model includes nonlocal pseudo-
differential operators and reflects diffusive and dispersive effect
stemming from the viscous layer in the fluid. In view of the impor-
tance of fractional water wave model, some researchers have done
some studies with numerical algorithms. Zhang and Xu [31] gave
numerical solution and theories for a water wave model with a non-
local viscous term by using the spectral methods. Wang et al. [56]
looked for the numerical solutions for fractional water wave model
by combining finite difference method in time with H1-Galerkin
MFE procedure in space.

In this article, we will discuss the detailed numerical theories of
new TT-M FE method by solving numerically nonlinear fractional
water wave model. We will give the detailed analysis on the stabil-
ity and error estimates in L2-norm, then provide some numerical
calculations to test and verify the effectiveness and feasibility for
our TT-M FE method. From our calculating results with comparison
to standard nonlinear FE method, ones can see that the TT-M FE
method not only maintains the computational accuracy, but also
save the CPU time.

The structure of the paper is as follows. In Section 2, we give the
numerical scheme for new TT-M FE method. In Section 3, we prove
the stability on time coarsemesh and TT-M FEmethod. In Section 4,
we derive the error estimates on both time coarse mesh method
with DtC and TT-M FE method. In Section 5, we implement the
numerical calculation by using TT-M FE method and standard non-
linear FE method, and make some comparisons between two
numerical methods. Finally, in Section 6, we make some conclu-
sions and future advancements for our methods. In the full text,
we use some constants C, which are free of space mesh h, time
coarse mesh DtC , time fine mesh DtF and may be different in differ-
ent places.

2. Numerical scheme

In order to arrive at the fully discrete TT-M FE scheme, we need
to split the time interval ½0; T� into uniform partition with the
nodes tn ¼ nDtðn ¼ 0;1;2; � � � ;NÞ, which satisfies 0 ¼ t0 < t1 <

t2 < � � � < tN ¼ T with mesh length Dt ¼ T=N for some positive
integer N. Now we define /n ¼ /ðtnÞ for a smooth function / on

½0; T� and the notation @Dt ½/nþ1� , 3/nþ1�4/nþ/n�1

2Dt used in [47].

For formulating the discrete scheme, we give the following
equality for the 1=2-order fractional derivative at time t ¼ tnþ1
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where Q

1=2
k ¼ ðkþ 1Þ1=2 � ðkÞ1=2 and enþ1

0 is the truncation error
including the following estimate with the positive constant C (see
[32,47,57])
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Using second-order backward difference approximation, then
applying Green’s formula, we find uðmþ1Þs : ½0; T�# H1

0 ¼
fvjv 2 H1ðXÞ; vðxLÞ ¼ vðxRÞ ¼ 0g to obtain the weak formulation of
(1.1)–(1.3) for any v 2 H1

0 as
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where us is the first weak solution at time ts calculated by the initial
value u0;DtG ¼ ts � t0 ¼ tðmþ1Þs � tmsðG ¼ F or CÞ is the time step
length, and
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where dðmÞ ¼ m
1
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For formulating FE scheme, we define Vh as the FE subspace of

H1
0. Then, we find uðmþ1Þs

h 2 Vh to formulate a standard nonlinear FE
system for any vh 2 Vh as
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where us
h is the first numerical solution at time ts computed by the

initial value u0
h.
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