

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model

M. Sheikholeslami ^{a,*}, S.A. Shehzad ^{b,*}

- ^a Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
- ^b Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan

ARTICLE INFO

Article history:
Received 30 October 2017
Received in revised form 22 December 2017
Accepted 25 December 2017

Keywords:
Porous media
Thermal non-equilibrium
Nanofluid
Free convection
Magnetic field
CVFEM

ABSTRACT

In this article, nanofluid convective flow inside a porous enclosure is simulated by means of two-temperature model. Control volume based finite element method is employed for this purpose. Nanofluid properties are estimated by means of KKL model. Darcy- Boussinesq approximation is utilized for nanofluid flow field. Lorentz forces effects are taken into consideration. Roles of solid-nanofluid interface heat transfer parameter (Nhs), Rayleigh number (Ra), porosity (ε), and Hartmann number (Ra) are examined. Outputs demonstrate that $|\psi|_{\rm max}$ enhance with rise of Nhs but it augments with rise of Ra. Porosity has opposite relationship with temperature gradient.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flow in a porous cavity has wide applications, such as drying technologies, solar power collectors and geothermal systems, etc. Various applications of porous medium such as energy storage should be analyzed by non-equilibrium model. Hayat et al. [1] investigated three dimensional nanofluid convective heat transfer in existence of magnetic field over a stretching plate. Sheikholeslami and Rokni [2] simulated thermal radiation effect of nanofluid convective flow in existence of electric field. Ahmed et al. [3] studied the transient radiative flow over a stretching surface in existence of chemical reaction. Sheikholeslami and Shehzad [4] demonstrated nanofluid flow in a porous media in presence of Lorentz forces. Sheikholeslami and Bhatti [5] reported nanofluid forced convection in presence of Lorentz forces. They utilized various shapes of nanoparticles. Sheikholeslami and Shehzad [6] presented the role of radiative mode on nanofluid behavior. Basak et al. [7] simulated the convective flow in a permeable cavity considering different boundary conditions.

Khan et al. [8] studied the nanofluid squeezing flow in a rotating duct with stretching wall. Sheikholeslami and Sadoughi [9] investigated melting surface effect on nanofluid convective flow. Hayat

E-mail addresses: mohsen.sheikholeslami@nit.ac.ir, mohsen.sheikholeslami@yahoo.com (M. Sheikholeslami), sabirali@ciitsahiwal.edu.pk, ali_qau70@yahoo.com (S.A. Shehzad).

et al. [10] investigated nanofluid flow over a rotating porous disk. They utilized carbon nanotubes. Sheikholeslami and Seyednezhad [11] utilized nanofluid for heat transfer improvement in a porous cavity in existence of non-uniform magnetic field. Sheremet et al. [12] presented the application of Buongiorno model for nanofluid free convection in a porous media. Sheremet et al. [13] depicted the convective motion of ferrofluid inside a rotating cavity. Sheremet et al. [14] used Boussinesq-Darcy approximation for porous cavity. Sheikholeslami and Shehzad [15] employed non-Darcy model for nanofluid motion in a permeable medium under the impact of variable Lorentz forces. Sheikholeslami and Rokni [16] demonstrated nanofluid MHD free convection in existence of melting surface. Sheikholeslami and Sadoughi [17] investigated the effect of nanoparticles' shape on thermal behavior of nanofluid inside a porous enclosure in existence of magnetic field. Different publications have been published about nanofluid flow in various applications [18-43].

This paper intends to investigate nanofluid treatment in a porous enclosure considering thermal non-equilibrium model under the impact of Lorentz forces. CVFEM is employed to show the impact of magnetic field. Roles of Rayleigh number, porosity, the solid-matrix/nanofluid interface heat transfer parameter and Hartmann number are depicted in results.

^{*} Corresponding authors.

Nomenclature

h _{nfs} B	interface heat transfer coefficient Magnetic field [Tesla]
Nhs	solid-matrix/nanofluid interface heat transfer parame-
	ter
Nu	Nusselt number
На	Hartmann number
Ra	Rayleigh number
K	permeability [m ²]
X, Y	Horizontal and vertical space coordinates
T	Fluid temperature [K]

Greek symbols

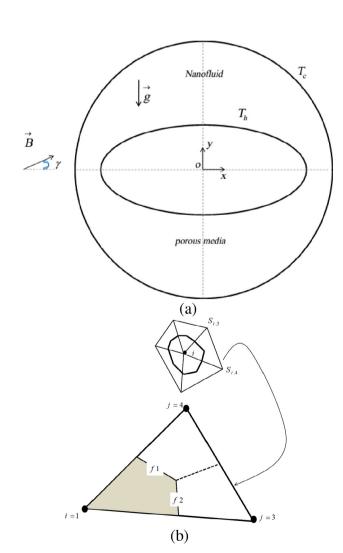
 ε porosity of the porous medium β Thermal expansion coefficient [K⁻¹] μ Dynamic viscosity [Pa s]

 ρ Fluid density

dimensionless temperature

 ψ stream function σ Electrical conductivity

 δ_s modified thermal conductivity ratio


Subscripts

 θ

s solid matrix p particle nf Nanofluid f Base fluid

2. Definition of the problem

Fig. 1 shows the boundary condition and geometry. The hot wall formulation is:

Fig. 1. (a) Geometry and the boundary conditions with (b) A sample triangular element and its corresponding control volume.

$$b = \sqrt{1 - \varepsilon_1^2} \cdot a \tag{1}$$

where a, b, ε_1 are the major, minor axis of elliptic cylinder and eccentricity for the inner cylinder. Horizontal magnetic field is employed. The porous enclosure is filled with CuO-water nanofluid.

3. Formulation and simulation

3.1. Governing equation

The thermal non-equilibrium model and Boussinesq-Darcy law for flow are employed. So, the 2-temperature model is utilized. Considering these conditions, the governing PDEs are:

$$\nabla \cdot \vec{V} = 0 \tag{2}$$

$$-\frac{\mu_{nf}}{K} - (\rho \beta)_{nf} (T_{nf} - T_c) \vec{g} - \sigma_{nf} (\vec{V} \times \vec{B}) - \nabla p = 0$$
 (3)

$$\frac{k_s}{(\rho C_p)_s} \nabla^2 T_s + \frac{h_{nfs}}{(1-\epsilon)(\rho C_p)_s} (T_{nf} - T_s) = 0 \tag{4} \label{eq:4}$$

 $(\rho C_p)_{nf}, (\rho \beta)_{nf}, \rho_{nf}$ and σ_{nf} can be defined as:

$$(\rho C_p)_{nf} = \phi(\rho C_p)_p + (1 - \phi)(\rho C_p)_f \tag{5}$$

$$(\rho\beta)_{nf} = (1 - \phi)(\rho\beta)_f + \phi(\rho\beta)_n \tag{6}$$

$$\rho_{nf} = \rho_f (1 - \phi) + \rho_p \phi \tag{7}$$

$$\frac{\sigma_{\textit{nf}}}{\sigma_{\textit{f}}} = 3 \frac{(\textit{MM}-1)\phi}{\phi(1-\textit{MM}) + (\textit{MM}+2)} + 1, \; \textit{MM} = \frac{\sigma_{\textit{p}}}{\sigma_{\textit{f}}} \eqno(8)$$

Table 1The coefficient values of CuO—Water nanofluid.

Coefficient values	CuO-Water
a_1	-26.593310846
a_2	-0.403818333
a_3	-33.3516805
a_4	-1.915825591
a_5	6.42185846658E-02
a_6	48.40336955
a_7	-9.787756683
a_8	190.245610009
a_9	10.9285386565
a_{10}	-0.72009983664

Download English Version:

https://daneshyari.com/en/article/7054750

Download Persian Version:

https://daneshyari.com/article/7054750

<u>Daneshyari.com</u>