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a b s t r a c t

The present paper deals with the micromechanical modeling of the effective thermal conductivity of
composite materials containing ellipsoidal inclusions with highly conducting interfaces. At these inter-
faces between inclusions and the surrounding medium, the temperature field is assumed continuous
while the heat flux undergoes to a discontinuity. The proposed model is based on the solution of the
Eshelby’s inclusion problem with highly conducting interfaces. Moreover, the present study is conducted
in the general case of an anisotropic thermal conductivity per phase and ellipsoidal inclusions.
Results in terms of the thermal intensity field inside each phase are proposed and then analyzed in light

of the effects of some model parameters. The effective thermal conductivity of the composite has been
predicted through classical homogenization schemes such as the Dilute medium, the Mori-Tanaka and
the Differential schemes. The model predictions have been also compared with some results provided
by previous investigations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For the determination of the effective thermal conductivity of
composites, the classical homogenization methods assume perfect
interfaces between the inclusions and the matrix. In reality, these
interfaces are imperfects and involve a discontinuity of the tem-
perature or the normal heat flux. In such a situation, two cases
are distinguished.

The first one deals with imperfect interfaces exhibiting the dis-
continuity of the temperature while the normal heat flux remains
continuous. These interfaces known as weakly conducting or low
conducting (LC) interfaces [1] are essentially due to the roughness,
the poor mechanical or chemical adhesion, the presence of a thin
layer of low thermal conductivity inserted between the local
phases of the composite [2]. These imperfect interfaces reduce
the effective thermal conductivity of the composite. The problem
of the thermal conductivity in composite with LC interfaces has
been the subject of some investigations in recent years [3–9].

The second case of imperfect interfaces induces the discontinu-
ity of the normal heat flux, while the temperature remains contin-
uous. This phenomenon appears mainly in the case of a thin
interphase of high thermal conductivity located between the

constituents of the composite. The passage from a highly conduct-
ing interphase to an imperfect interface has been rigorously estab-
lished by Pham Huy and Sanchez-Palencia [10].

In the literature, some works have been devoted to the mod-
elling of composite with highly conducting (HC) interfaces:

The first type is based on the Hashin-Shtrikman variational
principles and aims to evaluate the lower and upper bounds of
the effective conductivity of heterogeneous materials [5,11,12].
These variational methods provide explicit expressions of the
upper and lower bounds of the conductivity of two-phase compos-
ites containing spherical inclusions.

The second type concerns some numerical methods for the
determination of the effective conductivity of composites with
HC interfaces. For example, by combining the level-set method
and the extended finite element method, the Fourier transform
method is applied to periodic composites [13,14].

The third type deals with the concept of highly conducting
interphase located between the inclusions and the matrix. Then,
models of imperfect interfaces are deduced asymptotically when
the thickness of the interphase tends to zero and the conductivity
of the interphase to infinity [15–19].

The fourth one is based on the Fourier’s law governing the heat
transfer. The solution of the corresponding heat equation has been
initially suggested by Rayleigh [20] and Maxwell [21], thanks to
spherical harmonic functions. Then, Cheng and Torquato [7]
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extended this method to periodic composites with HC interfaces.
Theses previous investigations provide analytical expressions of
the effective thermal conductivity, but are restricted to particular
cases of spherical or cylindrical inclusions and isotropic thermal
conductivity per phase. Miloh and Benveniste [22] generalized this
method to spheroidal inclusions by expressing the solution of the
Laplace’s equation in terms of ellipsoidal harmonic functions.
These authors also restricted themselves to the case of isotropic
thermal conductivity.

In light of these previous investigations, the solution of the
problem of thermal conductivity in composites with HC interfaces,
in the general case of ellipsoidal inclusions and anisotropic thermal
conductivity per phase remains a challenge. The present study sug-
gests a micromechanical model to treat this general case.

Based on the Green’s function technique, we propose the solu-
tion of this problem of heterogeneous thermal conductivity in
the framework of the Eshelby’s inclusion model. This approach
has been investigated by Le Quang et al. [23] in the particular case
of spherical inclusions. In the present study, we propose a new for-
mulation based on the interior- and exterior-point Eshelby’s con-
duction tensors for the problem of an ellipsoidal inclusion
embedded in a matrix with HC interfaces. Moreover, contrary to
initial investigations, the thermal conductivity is assumed aniso-
tropic per phase.

The present manuscript is organized as follows. The Section 2
develops the general micromechanical approach. Afterwards, clas-
sical homogenization schemes are elaborated to evaluate the effec-
tive thermal conductivity of composites in Section 3. In Section 4,
some simulations are conducted in order to derive the effective
thermal conductivity within both anisotropic and isotropic config-
urations. Comparisons with results of previous investigations are
also performed in order to examine the relevance of the elaborated
approach. Finally, the aspect ratio, the volume fraction of inclu-
sions, the local contrast of thermal conductivities and the interface
parameter, dependent effective conductivity of composites are
investigated and discussed in details.

2. Micromechanical model

The representative volume element (RVE) with volume V of the
composite material consists of ellipsoidal inclusions embedded in a
homogeneous matrix. Let qðrÞ, eðrÞ and TðrÞ, denote respectively
the heat flux, the intensity and the temperature fields at the vector

position rðx1; x2; x3Þ of the RVE. The thermal behaviour of the com-
posite is linear and described by the local thermal conductivity
tensor kðrÞ. The RVE is subjected to a homogeneous intensity field
e0 at its boundary @V .

The present study deals, in one hand, with the determination of
the local intensity field eðrÞ and the heat flux qðrÞ. On the other
hand, the present investigation aims to predict the effective ther-
mal conductivity of composite materials.

2.1. Basic equations

Under steady-state conditions and in the absence of internal
thermal source, the field equations of of such an heterogeneous
thermal conductivity problem are defined by the:

� Linear thermal behaviour described by Fourier’s law

qðrÞ ¼ kðrÞ:eðrÞ ð1Þ
� Energy conservation equation

divqðrÞ ¼ 0 ð2Þ
� Intensity field

eðrÞ ¼ �rTðrÞ ð3Þ
� Boundary conditions

TðrÞ ¼ �e0 � r for r 2 @V ð4Þ

Within the present study, the interfaces S between inclusions
and the matrix are assumed highly conducting (HC):

½qðrÞ�:n ¼ ðqþðrÞ � q�ðrÞÞ:n–0 and

½TðrÞ� ¼ TþðrÞ � T�ðrÞ ¼ 0 for r 2 S ð5Þ
where n is the unit vector normal to S oriented from S� to Sþ. TþðrÞ
and qþðrÞ (respectively T�ðrÞ and q�ðrÞ) are the fields defined on Sþ

(respectively S�).

2.2. Integral equation

The local thermal conductivity tensor kðrÞ can be split into a

uniform part k0 of the homogeneous reference medium (HRM)
and a fluctuating one dkðrÞ:

Nomenclature

T temperature (K)
x1; x2; x3 cartesian coordinates
a1; a2; a3 semi-axis of the ellipsoidal inclusion
f volume fraction of inclusions
SI interface between inclusions and matrix (m2)
g Green’s function
V volume of the representative volume element RVE (m3)
VI volume of inclusions (m3)
@V boundary of the considered RVE (m2)
r vector position of the current point
e local intensity field (K�m�1)
E macroscopic intensity field (K�m�1)
q local heat flux (W�m�2)
Q macroscopic heat flux (W�m�2)
n outward unit vector normal to the interface S
N outward unit vector normal to the boundary @V
k tensor of thermal conductivity (W�m�1�K�1)
kI tensor of thermal conductivity of inclusions

(W�m�1�K�1)

kM tensor of thermal conductivity of the matrix
(W�m�1�K�1)

keff tensor of effective thermal conductivity of the compos-
ite (W�m�1�K�1)

h ¼ k�1 tensor of thermal resistivity (m�K�W�1)
K Green’s vector
GI interior-point Eshelby’s thermal conduction vector
GE exterior-point Eshelby’s thermal conduction vector
C modified Green’s tensor
SI interior-point Eshelby’s thermal conduction tensor

Greek symbols
dðrÞ Dirac function
dij Kronecker delta
a interface thermal parameter (W�K�1)
rTðrÞ temperature gradient: riTðrÞ ¼ @TðrÞ=xi
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