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a b s t r a c t

In this study, the Pareto optimal design of COOH-MWCNTs nanofluid was investigated to reduce pressure
drop and increase the relative heat transfer coefficient. Objective function modeling was based on empir-
ical data, the solid volume fraction, and Reynolds number and then simulated with the response surface
method in Design Expert software. After the objective function approximation, the regression coefficient
of more than 0.9 for this study indicated the high accuracy of modeling through the RSM. To implement
the optimization process, the powerful multi-objective particle swarm optimization algorithm was used.
To show the correct optimization process, the results of the first and last generations of optimization are
presented at the Pareto front, with all parts of it being non-dominant and optimized. Optimal results
showed that to achieve a minimum pressure drop, the relative solid volume fraction should be at the
minimum interval, and to achieve the maximum heat transfer coefficient, the relative solid volume frac-
tion should be at the maximum interval. In addition, all optimal parts have the Reynolds number in the
maximum range. At last, the optimum locations are presented, and the designer can select from these
optimal points.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing heat transfer and heat transfer fluids has been the
subject of much research in recent decades. Heat transfer fluids
provide conditions for energy exchange in a system, and their
effects depend on physical properties, such as thermal conductiv-
ity, viscosity, density, and heat capacity. Low thermal conductivity
is often the most important limitation of heat transfer fluids.
Among the studies conducted to overcome this limitation, Choi’s
proposed approach for the distribution of nanoparticles in a base
fluid and for making nanofluids can be described as the best solu-
tion [1]. The impact of nanoparticles on the thermal conductivity of

fluids can have a direct effect on heat transfer performance, thus
increasing the heat transfer coefficient of fluids [2–8].

According to studies, the increasing temperature and solid vol-
ume fraction of nanoparticles in fluids can be called two important
factors increasing the thermal conductivity of nanofluids [9–19]. In
a study that Hemmat Esfe and Saedodin [3] carried out, the heat
transfer characteristics of MgO/water nanofluids were tested in a
heat exchanger. The results showed that a nanofluid with a
higher-volume fraction and with a lower diameter of its nanopar-
ticles has a higher Nusselt number and therefore, the higher the
heat transfer coefficient. To predict the behavior of the heat trans-
fer coefficient, pressure drop, and thermodynamic properties, such
as thermal conductivity and the viscosity of nanofluids that various
factors influence, mathematical relationships can be used. How-
ever, recently, software techniques, such as neural networks, have
been used for this purpose. In Table 1, some of the studies in the
field of modeling neural networks can be seen (Refs. [20–28]).

In a study, Hemmat Esfe et al. [29] Investigated the viscosity
of TiO2/water nanofluids using a neural network design. The
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algorithm used was a multilayer perceptron, which contains a hid-
den layer and four neurons. The results showed the high power of
neural networks in predicting the experimental data, with the cal-
culated regression coefficient being equal to 0.9998. Optimization
between different parameters that sometimes conflict with one
another has become an important issue in engineering problems
in the past decade. The process that optimizes the collection of
functions is called multi-objective optimization (MOO). Contrary
to single-objective modeling, in MO problems, the objective is a
set of points. All of these points apply the Pareto optimality defini-
tion for an optimal result at the Pareto front [30]. In recent years,
studies on the algorithms of development (EAs) increased to
expand MOO methods. Among famous algorithms, the genetic
algorithm (GA) and non-dominated sorting genetic algorithm-II
algorithm (NSGA-II) can be named [24,31–34].

Response surface methodology (RSM) is a set of mathematical
methods that determine the relationship between one or more
response variables with several independent variables (studied).
In engineering, many phenomena can be modeled based on their
related theories. In the case of the ineffectiveness of other model-
ing, the use of empirical modeling may work, with one of the most
important of them being RSM [35–37]. For instance, Hussein et al.
[38] designed a test for two nanofluids’ heat transfer—SiO2/water
and TiO2/water—in the radiator of a car. The results showed an
increase in heat transfer by increasing the volumetric flow rate,
inlet temperature, and solid volume fraction of the nanoparticles.
Finally, they considered temperature variables, the volumetric flow
rate, and the solid volume fraction as inputs and the Nusselt num-
ber as the response and designed a model. Besides MOO and

response surface methods, some other methods may be used to
analysis the heat exchangers which are based on entropy genera-
tion method [39,40].

In this study, to increase the relative heat transfer coefficient,
and the relative pressure drop reduction of the COOH_MWCNTs
nanofluid, a powerful optimization algorithm called swarm
multi-objective particle was used. The objective functions were
approximated using experimental data and the RSM and as the
output were provided functions as polynomial objective functions.

To implement process optimization, the obtained model for
objective functions connected to the multi-objective particle
swarm algorithm (birds), and at each assessment, objective func-
tions were used. After the implementation of the optimization pro-
cess, to observe the optimization process, the results of the
optimization of two main objectives in the first and last genera-
tions were presented in the form of Pareto front.

In this study, to increase the relative heat transfer coefficient
and to reduce the relative pressure drop of COOH_MWCNTs nano-
fluid, the powerful multi-objective particle swarm optimization
(MOPSO) algorithm was used. The objective functions were
approximated using the experimental data and the RSM, and poly-
nomial functions are presented for objective functions as the out-
puts. To implement the optimization process, the obtained
models for objective functions were put into the multi-objective
particle swarm (birds) algorithm, and at each assessment, these
objective functions were used. After running the optimization pro-
cess, to observe it, the results of the two objective functions’ opti-
mization in the first and last generations were presented in the
form of the Pareto front.

Table 1
A summary of the studies in the field of modeling a neural network of nanofluid properties.

Author(s) Nanofluid Target(s) Regression quality Algorithm

Hemmat Esfe et al. [20] Fe/EG Thermal conductivity MSE = 0.00016 MLP
Dynamic viscosity MSE = 0.00026

Hemmat Esfe et al. [21] Al2O3/water Thermal conductivity MSE = 2.42E�6 MLP
Adham et al. [22] SiC/water Thermal resistance & pumping power NSGA-II

TiO2/water
Zhao et al. [23] Al2O3/water Dynamic viscosity R-squared = 0.9962 RBF

CuO/water R-squared = 0.9998
Mehrabi et al. [24] TiO2/water Nusselt number & Pressure drop MAE = 0.835 GA-PNN & GMDH & NSGA-II

MRE = 8.9%
RMSE = 1.01

Ziaei-Rad et al. [25] Al2O3/water Friction factor MRE = 0.19% MLP
Nusselt number MRE = 0.36%

Meybodi et al. [26] Al2O3/water Dynamic viscosity R-squared = 0.998 LSSVM
TiO2/water
SiO2/water
CuO/water

Santra et al. [27] CuO/water Nusselt number MRE = 2.54 RPROP
STDR = 2.46%

Sharifpur et al. [28] Al2O3/glycerol Dynamic viscosity R-squared = 0.9905 GMDH

Nomenclature

T temperature (�C)
w weight (gr)
k thermal conductivity (W m�1 �C�1)
Re Reynolds number
ANOVA analysis of variance
MWCNT Multi-Walled Carbon Nanotube
MOPSO Multiple Objective Particle Swarm Optimization
MOO multi-objective optimization
GA Genetic algorithm
NSGA-II non-dominated sorting genetic algorithm-II
RSM Response surface methodology

DOE Design of experiments

Greeks symbols
q density (kg m�3)
u particle solid volume fraction

Subscripts
Nf nanofluid
bf base fluid
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