
Technical Note

Generalized heat conduction model in moving media emanating
from Boltzmann Transport Equation

Tao Xue a, Xiaobing Zhang a,⇑, Kumar K. Tamma b

a School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
bDepartment of Mechanical Engineering, University of Minnesota-Twin Cities, 111 Church St. SE, Minneapolis, MN 55455, United States

a r t i c l e i n f o

Article history:
Received 31 March 2017
Received in revised form 24 August 2017
Accepted 15 November 2017

Keywords:
Generalized heat conduction
Moving media
Boltzmann Transport Equation

a b s t r a c t

In this work, we start with several concerns regarding Galilean variance, pointed out by Christov and
Jordan (2005), of the Cattaneo-Vernotte heat conduction in moving media. We then describe a general-
ized heat transport model in moving media and its underlying theory emanating from the Boltzmann
Transport Equation, which achieves the Galilean invariance in all the inertial frameworks. The resulting
model recovers heat transport characteristics of different scales with respect to both space (from ballistic
to diffusive limits) and time (from finite to infinite heat propagation speeds).

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fourier’s law has been widely exploited to describe heat con-
duction and mass transport phenomenon for most engineering
applications. However, Fourier’s law is acknowledged to be local
in time and predicts thermal wave propagation with an infinite
speed [1], which is unrealistic. To address this ‘paradox of heat
conduction’, various modifications of the established Fourier’s
law, such as Cattaneo-Vernotte [2,3], have been proposed. Later,
a Dual-Phase-Lag (DPL) [1,4] model was proposed as a generalized
heat conduction model by adding two phase lags into the Fourier’ s
Law; however, this DPL model is physically inaccurate as noted in
the literature [6]. Alternately, the C- and F-heat conduction model
proposed by Tamma et al. [5,6] describes the evolution of heat
transport characteristics of different scales with respect to both
space (from ballistic to diffusive limits) and time (from finite to
infinite heat propagation speeds).

Regarding the heat conduction in moving media [7], the mate-
rial derivative with respect to time has been exploited in the bal-
ance law for the internal (heat) energy, which is expressed as

qcp
@T
@t

þ V � rT þr � q ¼ 0 ð1Þ

where T and q represent the temperature and the thermal flux
vector, respectively; cp and q represent the specific heat and the

density of material, respectively; V is the velocity of moving media.
The q of Fourier’ s law and its modification, Cattaneo-Vernotte
model, are as follows:

1. The Fourier Model

q ¼ �krT ð2Þ
where k is the conductivity.

2. The Cattaneo Model

sDq
Dt

:¼ s @q
@t

þ V � rq
� �

� q ¼ �krT ð3Þ

where s is the relaxation time. Coupled with the balance equa-
tion in moving media, Eqs. (1) and (3) end up with a diffusive-
hyperbolic heat conduction model. In addition, the speed of sec-
ond sound is given as

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
k

qcps

s
ð4Þ

One may note that the partial time derivative in the original
Cattaneo-type thermal flux is replaced by a material derivative in
Eq. (3). This is in order to circumvent the paradox of the second
sound inconsistency in different inertial frameworks when the
Cattaneo-type heat conduction model is exploited to depict the
heat transfer in moving media. Specifically, the paradox is that

the thermal waves of finite speed c ¼
ffiffiffiffiffiffiffi
k

qcps

q
in the usual form,

which involves a partial time derivative, of Cattaneo-type heat con-
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duction model is different from the one in the moving media from
the resting body, which violates the Galileo’s principle of relativity.
This remarkable replacement was firstly introduced by [7], which
has made a significant contribution with respect to the field of heat
transport in the moving media. The associated model was proved
to preserve the Galilean invariance in all the inertial frameworks.
More details can be found in [7].

Inspired by [7], the present work is designed as an extension of
the previous studies and devotes to achieve: (a) interpreting the
underlying physics of the heat conduction in moving media from
the perspective of Boltzmann Transport Equation. Apart from the
mathematical presence of the replacement proposed previously,
physical interpretations behind this simple replacement is worth
being noted; (b) exploring the Galilean invariance of the Fourier-,
Cattaneo-, and Jeffreys-type heat transport processes for moving
media; and (c) analyzing the limitations of themovingmedia speed.

2. Theory

2.1. The BTE in the material framework

Consider a very small region of space, X, namely system I, cen-
tered at the position x and the heat carrier has the velocity t at an
instant of time. The BTE of the probability, f ðx; t; tÞ, that a particle
occupying a very small given region of space is given as:

@f
@t

þ t � rf þ a � @f
@t

¼ @f
@t

� �
coll

ð5Þ

where f ðx; t; tÞ is the nonequilibrium thermodynamic distribution
function, tðxÞ is the heat carrier velocity and is assumed to be con-
stant over a large frequency range such that @f

@v is omitted, a is the
heat carrier acceleration due to the external force field.

Suppose system II has a relative velocity V with respect to sys-
tem I described by Eq. (5), such that the transformation law
between system I to II are as follows:

s ¼ t; X ¼ r � Vs; f ðX; T; EðxÞÞ ¼ f ðx; T; EðxÞÞ
@

@t
¼ @

@s
þ V

@

@X
;

@

@x
¼ @

@X

ð6Þ

where s;X are the time dimension and space vector in the system II,
respectively. Note that the particle distribution f and t are assumed
to be invariant in different frames. In such a way, the BTE in system
I can be written in the sense of moving media, system II, as follows:

@f
@s

þ V � @f
@X

þ t0 � @f
@X

¼ @f
@t

� �
coll

ð7Þ

where t0 is the velocity of heat carrier in system II. One may note
that the right hand collision term is preserved the same as Eq. (5)
under the assumption that the particle distributions of both sys-
tems are invariant.

Suppose that both Cattaneo-type slow processes/low frequency
(C-processes) and Fourier-type fast processes/high frequency (F-
processes) coexist concurrently in the heat conduction process,
the total heat flux simultaneously accounts for low and high
energy processes as

q ¼
Z xD

0
t0f ðx; T;xÞ�hxDðxÞdx

¼
Z xT

0
t0f ðx; T;xÞ�hxDðxÞdx

þ
Z xD

xT

t0f ðx; T;xÞ�hxDðxÞdx ¼ qC þ qF

ð8Þ

where �h is Planck’s number divided by 2p meaning �hx is the
energy, and DðxÞ is the density of states. The assumption made here

is that the integral up to a threshold frequency xT associates with
the slow process (qC) and that the integral from the threshold to
the Debye frequency, xD, associates the fast process (qF). Also, the
velocity of heat carrier, t0, in Eq. (8), is the local heat carrier speed
in each inertial system. The assumption of the coexistence of the
fast and the slow heat conduction processes was proposed by
Tamma et al. [5]. It provides the possibility of bridging the heat
transport systems with multi-scale in both time (infinite wave
speed to finite wave speed) and space (ballistic to diffusion).

Multiplying the transient BTE, Eq. (7), by t0w, where
w ¼ �hxDðxÞ, and integrating over the entire frequency ranges (0
to xD) yieldsZ xT

0

@f
@s
t0wdxþ

Z xD

xT

@f
@s
t0wdxþ

Z xT

0
V � rXft0wdx

þ
Z xD

xT

V � rXft0wdxþ
Z xT

0
t0 � rXft0wdxþ

Z xD

xT

t0 � rXft0wdx

¼
Z xD

0

@f
@s

� �
coll

t0wdx ð9Þ

where rX is the gradient operator with respect to the space vector
X in system II.

As a matter of fact, the distribution function, f, at high frequen-
cies is nearly constant over time such that its time rate of change,RxD
xT

@f
@s t

0wdx, can be neglected. This leads to the pure Fourier’s

model, whereas, the change of f mainly occurs within the low fre-
quency domain. Before carrying on, the following approximations
and definitions may be required in the following total flux splitting
process.

1. Approximation of @f
@s

� �
coll

The Bhatnagar-Gross-Krook approximation is exploited in this
work as follows:

@f
@s

� �
coll

¼ f 0 � f
s

ð10Þ

where f 0 is the thermodynamic distribution at equilibrium and s
is the relaxation time for returning from the state f to equilib-
rium f 0.

2. Approximation of @f
@x

According to the local thermal dynamic equilibrium, @f
@x can be

approximated as:

@f
@x

ffi @f 0
@x

¼ df0
dT

dT
dx

ð11Þ

3. Definition of specific heat and thermal conductivity
Based on the kinetic theory, the specific heat and the thermal
conductivity can be given under the presence of the tempera-
ture gradient as follows:

CðTÞ ¼
Z xD

0

df0
dT

wdx;

KðTÞ ¼
Z xD

0
st02 df0

dT
wdx ¼ 1

3
Cst2 ¼ 1

3
Csðt2C þ t2F Þ ¼ KC þ KF

ð12Þ
where KðTÞ is the total thermal conductivity, CðTÞ is the total speci-
fic heat per unit volume, t is the average speed of the heat carriers.
Herein, two average speeds of heat carriers in different ranges are
introduced for the forthcoming derivation. Specifically, tC and tF
represent the average speeds of heat carriers in slow and fast heat
processes, respectively, and are given by

tC ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� FT

p
; tF ¼ t

ffiffiffiffiffi
FT

p
ð13Þ
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