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a b s t r a c t

Heat transfer in the thermal boundary layer beneath a generalized vortex flow has been considered. The
steadily revolving flow is allowed to vary with the distance r from the symmetry axis as rm. The governing
equations for heat and momentum transport transformed exactly to a coupled set of ordinary differential
equations by means of a tailor-made similarity transformation. Some different flow situations in presence
of suction have been considered, including solid-body rotation ðm ¼ þ1Þ and a potential vortex ðm ¼ �1Þ.
The thermal boundary layer was observed to thicken monotonically with decreasing m-values, accompa-
nied by a reduction of the heat transfer rate through the planar surface above which the flow revolves.
These findings were explained as the combined influence of two different effects, namely: (i) a variation
of the effective Prandtl number ðmþ 3ÞPr=2 that directly affected the thermal diffusion, whereas (ii) an
indirect variation of the axial velocity component affected the thermal convection.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Bödewadt [1] considered the steadily revolving flow of a viscous
fluid above an impermeable solid surface. The fluid far above the
planar surface was assumed to be in a state of rigid-body rotation
so that the tangential velocity component v increased linearly with
the distance r from the axis of rotation. The presence of viscous
shear stresses inevitably slowed down the revolving fluid motion
in the viscous boundary layer adjacent to the surface. A resulting
imbalance between the radial pressure gradient and the centrifugal
force gave rise to a velocity component directed towards the axis of
rotation. Finally, to secure mass conservation, an axial flow away
from the surface arose and a three-dimensional boundary layer
flow was established. The effects of alternative boundary condi-
tions at the planar surface have been examined by Nath and
Venkatachala [2], Sahoo et al. [3] and Turkyilmazoglu [4]. They
considered suction, partial slip, and stretching, respectively.

The classical Bödewadt flow problem was later generalized by
King and Lewellen [5] who assumed the tangential velocity to vary
as v � rm where m is dimensionless constant. They were partly
concerned with the effect of the parameter m and partly with the
effect of a magnetic body-force term on the fluid motion. Their
study was extended by Venkatachala and Nath [6] to also include
effects of suction through the surface. The generalized Bödewadt
flow was also considered as a part of an extensive paper by Kuo

[7] focused on tornado-like vortices. In addition to the conven-
tional no-slip conditions at the solid surface, Kuo [7] also allowed
for partial surface slip. This was referred to as a geophysical bound-
ary condition.

It was suggested by Moore [8] that the generalized Bödewadt
flow does not admit similarity solutions for m ¼ �1, i.e. when
the revolving flow behaves as a potential vortex. The non-
existence of similarity solutions was later proved by King and
Lewellen [5]. However, as demonstrated by Nanbu [9] and Venkat-
achala and Nath [6], similarity solutions do exist in the presence of
suction through the surface.

The aim of the present paper is to investigate for the first time
the heat transfer between a generalized Bödewadt flow and the
planar surface above which the fluid revolves. We recently demon-
strated that realistic similarity solutions of the thermal energy
equation do not exist for the classical Bödewadt flow above an
impermeable surface [10]. In presence of sufficent suction, how-
ever, the thermal boundary layer problem allowed for realistic
similarity solutions. In order to extend the thermal analysis to gen-
eralized Bödewadt flows, accurate solutions of the three-
componential velocity field are required. To this end we revisit
the work by King and Lewellen [5] and Kuo [7] to first obtain the
revolving flow field over an impermeable surface. Subsequently,
distributed suction will be introduced, similarly as in the study
by Venkatachala and Nath [6]. Finally, similarity solutions of the
thermal energy equation will be provided for some different
revolving flows, including solid-body rotation ðm ¼ þ1Þ and poten-
tial vortex flow ðm ¼ �1Þ, and for some different Prandtl numbers.
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2. Problem formulation and solution approach

2.1. Mathematical model equations

Let us consider the steadily revolving flow of a viscous fluid
above a planar surface. In cylindrical polar coordinates ðr; h; zÞ the
governing mass conservation, momentum and thermal energy
equations become:
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where (u;v ;w) are the velocity components of the fluid in the radial,
tangential and axial directions, respectively, and T is the tempera-
ture. Here, we have assumed rotational symmetry about the vertical
z-axis, i:e:@=@h ¼ 0. The kinematic viscosity of the fluid is m. Cp is the
specific heat at constant pressure of the fluid. k is the thermal con-
ductivity of the fluid.

This set of coupled partial differential equations (PDEs) are the
same as those governing the heat and momentum transport in the
von Karman flow driven by a steadily rotating disk and the Böde-
wadt flow caused by revolving fluid in solid-body rotation above
a planar surface. In this paper, however, we are concerned with a
generalized vortex flow which includes the classical Bödewadt
flow [1] only as a special case. The boundary conditions are there-
fore given as
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The tangential flow v high above the planar surface at z ¼ 0 is

assumed to exhibit a power-law variation where the power
m ¼ 2n� 1 is a prescribed parameter. In the present study we also
allow for suction through the surface. The suction velocity wðr;0Þ
varies as rn�1 and A < 0 is a dimensionless suction parameter.
The temperature varies from Tw at the surface to T1 in the vortex
flow high above the surface.

By means of the usual boundary layer approximations, namely
that w � u; v and @=@z � @=@r, the system of Eqs. (1)–(5) simpli-
fies to:
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still subjected to the boundary conditions defined in Eq. (6). Here,
Eq. (10) simply states that the pressure p remains constant across
the three-dimensional boundary layer.

2.2. Generalized similarity transformation

In view of the generalized boundary conditions in Eq. (6), we
now proceed and define the similarity transformations:
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where g is a dimensionless similarity variable defined by
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In terms of the non-dimensional variables the governing equa-
tions become:

H0 � F ¼ 0; ð14Þ

F 00 � ðnþ 1ÞHF 0 � ð1� 2nÞF2 � G2 þ 1 ¼ 0; ð15Þ

G00 � ðnþ 1ÞHG0 þ 2nFG ¼ 0; ð16Þ

H00 � Prðnþ 1ÞHðgÞH0 ¼ 0; ð17Þ
where Pr is the Prandtl number, Pr ¼ qmCp=k. The corresponding
boundary conditions specified in (6) transform to:

FðgÞ ¼ 0; GðgÞ ¼ 0; HðgÞ ¼ A; HðgÞ ¼ 1 at g ¼ 0;
FðgÞ ¼ 0; GðgÞ ¼ 1; HðgÞ ¼ 0 as g ! 1:

ð18Þ

By means of the transformation defined in Eq. (12), the PDEs in Eqs.
(7)–(11) transform exactly into a set of coupled non-linear ordinary
differential equations (ODEs) subjected to the seven appropriate
boundary conditions (18). This constitutes a three-parameter prob-
lem in terms of the power-law parameter n ¼ ðmþ 1Þ=2, the suction
parameter A and the Prandtl number Pr.

2.3. Numerical approach

We solved the two-point boundary value problem consisting of
the coupled set of ordinary differential Eqs. (14)–(17) subjected to
the boundary conditions (18). For this purpose we have used the
bvp4c MATLAB solver, which gives very good results for the non-
linear ODEs with multipoint BVPs. This finite-difference code uti-
lizes the 3-stage Lobatto IIIa formula, that is a collocation formula
and the collocation polynomial provides a C1-continuous solution
that is fourth-order accurate uniformly in [a,b]. For multipoint
BVPs, the solution is C1-continuous within each region, but conti-
nuity is not automatically imposed at the interfaces. Mesh selec-
tion and error control are based on the residual of the
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