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a b s t r a c t

In this study, we demonstrate that surrogate models can be trained and used to accurately predict the
optical properties of thin film solar cells and to optimize their structures. We consider organic an active
thin film poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester (P3HT:PCBM) layer coated
by indium-free highly conductivepolymer poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate)
(PEDOT:PSS) on top with aluminum as cathode, and study optical absorptivity enhancement of such a
structure when embedded with periodic spherical silver nano-particles. Metallic nano-structures, includ-
ing textures, gratings and particles are known to induce plasmonic effects on the surface and inside
absorbing semiconductors, thereby increasing light trapping in thin film cells. However, design of such
structures requires precise characterization of the dependencies of electromagnetic field distribution
to geometry parameters and material choices. Optical properties of structures at sub-wavelength scales
are measured by numerically solving first principle electromagnetic equations, e.g., by means of finite dif-
ference time domain (FDTD) method. These methods are time-consuming, and therefore limit the possi-
bility of exhaustive optimization. Surrogate modeling can be used to overcome this challenge. In the
present work, we design a two-layer neural network (NN) surrogate model to estimate the optical
absorptivity of the cell for any given geometry vector as well as any radiation wavelength and incident
angle. Training of the network is done using the Levenberg–Marquardt (LM) method with generalization
techniques such as early stopping and Bayesian regularization using a pool of training and validation
data. The resulting surrogate model is first demonstrated to yield accurate out-of-sample estimation of
absorptivity. Then, the model is used to investigate the individual contributions of each input by means
of sensitivity analysis. In addition, optimization of the parameters is efficiently done using the surrogate
model for different source light irradiance spectra and incident angles. Resulting optimizations are very
efficient. At the end, solutions found by surrogate-based optimization demonstrate enhancement factors
greater than 270% for optical absorptivity.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Research on organic solar cells (OSC) has a two decade history
with first mature examples studied and presented in 1990s [1,2].
Interest in these devices has led to record energy conversion effi-
ciency of 11.5% as of 2015 [3], which is still significantly lower than
achievable limits using silicon-based solar cells. Although power
conversion efficiency of OSCs is lower than their inorganic counter-
parts, they provide other desirable characteristics such as low cost,
ease of manufacturing and mechanical flexibility [4,5], as well as
smaller diffusion length of primary excitons which allows compa-

rably thinner active layers [6]. On the other hand, all photovoltaic
devices suffer from losing optical thickness as the physical thick-
ness of the active layer decreases [7,8]. Implementing metallic
(plasmonic) nano-textures can help to improve optical absorptivity
of thin film layers, therefore enhancing photocurrent by means of
scattering and near field light concentration [9]. However, in order
to properly design and fabricate such structures, a comprehensive
understanding of the underlying electromagnetic interactions with
plasmonic, dielectric and semiconductor mediums and interfaces
at nano-scale is required. Gaining physical insight into dependency
of optical performance of a thin film with shapes, dimensions,
material choices and other parameters of plasmonic nano-
textures or nano-particles have been the subject of extensive
review by nano-technology experimental and computational sci-
entists in the past 15 years. The research has led us to several
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design guidelines. In general, it is agreed that particle shape,
dimension and position in the solar cell should be taken into
account for a rigorous design of a plasmonic solar cell [7]. In addi-
tion, precise computational simulators that model electromagnetic
equations and material properties at nano-scale and solar optical
wavelenghts should be accompanied by powerful optimization
algorithms for a feasible and efficient design [10–15].

Optimal design of OSCs via plasmonic nano-material modifica-
tions has been recently focused by several researchers. In [16,17], a
systematic study using Finite Element Method (FEM) was con-
ducted in order to maximize absorption enhancement of a
PEDOT:PSS/P3HT:PCBM/Al solar cell with Ag nanospheres embed-
ded in P3HT:PCBM. It is demonstrated that an OSC with 33 nm
active layer and 24 nm diameter Ag nanospheres can absorb as
much light as a 61 nm active layer alone can. In [18], the authors
used brute search method to improve solar cell efficiency using
an optoelectrical simulation for ITO/PEDOT:PSS/P3HT:PCBM/Al
with square Al grating. They achieved 17% improvement in effi-
ciency compared to the bare solar cell. In [19], OSCs consisting of
the layers Ag/MoO3/P3HT:PCBM/Ca/ITO were optimized to maxi-
mize power conversion efficiency (PCE). 85 nm active layer and
5 nmMoO3 was demonstrated to result in a PCE of 3.86%. However,
in those studies, only one or two parameters were considered to be
optimized; a complete optimization has never been done for the
overall solar cell geometry.

Optical modeling of thin film solar cells relies on first principle
calculations. Finite difference time domain (FDTD) and Finite Ele-
ment Method (FEM) are two effective and common methods for
solving Maxwell’s equations. However, these computational meth-
ods require extensive resources and time. In a design optimization
cycle where one is looking for the best set of nano-materials shapes
and dimensions, many repeated numerical FDTD simulations must
be carried out for an entire wavelength range. This makes the

search process extremely cumbersome and, in cases with more
than a handful of parameters, infeasible. Even state-of-the art
numerical optimization algorithms might not be able to cope with
such complexity at higher dimensions or in cases where time vary-
ing or non-stationary elements are present (e.g., when the light
source changes or additional constraints are added and many opti-
mizations need to be implemented). In lieu of further advances in
first principle simulators, the only remedy to such a challenge is
the use of ‘‘surrogate modeling”. That essentially means replacing
the black-box (FDTD simulations) by an accurate regression model
which is able to ‘‘learn” the system’s response by being ‘‘trained”
with the previously generated data. Such a model can be used for
both optimization and analysis, leading to the concept of
Surrogate-Based Analysis and Optimization (SBAO). In addition to
expediting the design of optimal parameters, SBAO can be used
for a variety of analytical purposes, such as ‘‘Sensitivity Analysis”,
where the relative contribution of each input parameter to the out-
put is quantified.

Surrogate modeling can be constructed by a variety of
approaches, such as Kriging (KRG) model, polynomial regression
(Response Surface Approximation (RSA)), neural networks or
multi-layer perceptrons (MLP), and Gaussian radial basis functions
(RBF)) [20]. It is worth mentioning that the use of SBAO in opti-
mization of engineering systems is not unpresented. In fact, several
recent work have addressed using RSA for optimization of micro-
scale thermal systems (see e.g. [21]), obtaining a
computationally-reduced electromagnetic simulations for trans-
formers and antennas [22], and for designing high-performance
buildings [23]. Such modeling however has never been applied to
thin film solar cells and electromagnetic (FDTD) simulations of
semiconductors and plasmonic structures to the best of our knowl-
edge. The present work can therefore serve as an example use case
of SBAO in thin film solar cell design and analysis, and shall moti-

Nomenclature

A absorptivity
C cost function
c1; c2 simulated annealing parameters
D derivative vector
e error
EF enhancement factor
g probability
I solar spectrum
J Jacobian
L number of layers
m; t trend line parameters
N number of data in sampled set
nv number of parameters in coefficient vector
p NN input
q re-normalized NN output
r Ag radius
R number of neurons
R0 number of inputs
s vertical distance of Ag from bottom
s; S sensitivity
SSE normalized mean sum of squared error
SSW sum of squared weight
t target output
T temperature parameter in simulated annealing
t1 P3HT:PCBM thickness
t2 PEDOT:PSS thickness
v coefficient vector

W coefficient matrix
x geometry vector
y0; y1; y2 normalized NN input, intermediate output and output

Greek letters
a; b regularization parameter
k wavelength
l Marquardt parameter
u1;u2 Lagrange multipliers
h incidence angle

Subscripts
b bare
D derivative
j index of inputs
m index of layer
p plasmonic
T training
V validation

Superscripts
k iteration
L lower limit
n index of data in sample set
U upper limit
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