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a b s t r a c t

A collocation method based on radial basis functions (RBFs) is applied to solve the integral equations of
intensity moments for radiative heat transfer in scattering media with spatially varying refractive index
(VRI). Since the method does not require predefined meshes, it can be readily applied to the problem with
irregular geometry. Efficient codes of the collocation method with discrete ray tracing are developed. The
codes are applied to analyze radiative equilibrium in a semicircular medium with an inner circular
boundary. Since rigorous solutions on radiative equilibrium in three-dimensional refractive media are
seldom reported, we also apply the present method to analyze radiative heat transfer in cubic media with
VRI. The results obtained by using multiquadric RBFs for cases with various optical sizes and boundary
conditions are presented. Comparisons of the present results and those obtained by Monte Carlo discrete
ray tracing simulation show a good agreement; the discrepancy between the results of the two methods
decreases with the increase of the distinct data points used. The present results also show that the tem-
peratures of the cases with a diffusely reflecting semicircular surface are larger than those of the cases
with a black semicircular surface and a larger variation of temperature may be observed in the cubic
medium with a larger optical thickness.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative heat transfer in media with a spatially varying refrac-
tive index (VRI) can be found in biological tissues [1,2] and engi-
neering applications [3–5], which have aroused our interest in
such radiative heat transfer problems. Since the radiation streams
in curved paths due to the spatial variation of the refractive index,
the analysis of radiative heat transfer in a refractive medium is
more difficult than that in a uniform index medium. Differential
approximation methods [2–3,6–7] and numerous rigorous meth-
ods, including the discrete ordinate method (DOM) and its varia-
tions [8–11], the Monte Carlo method (MCM) [6,12–13], and the
integral equation method (IEM) [14–16], have been developed to
solve such kind of problems. Since the unknown intensity depends
on position and direction, the DOM requires large amount of com-
puter memory in higher dimensions. Furthermore, the MCM is a
computation-intense method [11]. The IEM essentially transforms
the integro-differential form of the radiative transfer equation in
terms of intensity into a set of algebraic equations in terms of
intensity moments with respect to directional cosine. Since the

intensity moments are independent of direction, solving the IEM
presents a better balance between computation cost and result
accuracy. Wu and Hou derived the integral equations of intensity
moments for radiative heat transfer in one- and two-dimensional
(2-d) refractive media with black boundaries and applied the
Nyström method to solve the resulting integral equations [14,15].
Degheidy et al. showed that the Galerkin method generated accu-
rate results for radiative heat transfer in finite slabs with VRI [16].

Numerical solutions to the integral equations may be obtained
by a variety of methods [17]. Some of the methods can be used to
solve higher-dimensional integral equations for radiative heat
transfer [15,18–21]. Computational complexity of mathematical
operations is the main difficulty for solving higher-dimensional
integral equations. The Galerkin method using inner product prop-
erty offers highly accurate results, albeit at the price of quite labo-
rious integrations [22]. A relatively simpler method is the
collocation method with approximating the unknown variables
by interpolation functions. In this work, we apply the collocation
method with approximating the unknown variables by radial basis
functions (RBFs) to solve two- and three-dimensional (3-d) integral
equations for radiative heat transfer in refractive and participating
media. RBFs were introduced by Hardy [23] and they form a useful
tool for multivariate interpolation. They are also receiving
increased attention for solving partial differential equation [24],
integro-differential equation [25] and integral equations [26,27].
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Utilizing RBFs to solve a higher-dimensional equation is a method
based upon the scattered data approximation that approximates a
function without any regular mesh generation on the domain
[28,29]. Such a meshless method is particularly attractive when
the domain considered cannot be expressed as product domains
of lower dimensions.

In this work, we describe a RBF-based integral equation method
(RBF-IEM) which extends the capability of the IEM to analyze
radiative heat transfer in 2-d and 3-d refractive media with regular
or irregular geometry. The implementations of the present method
are illustrated by applying the method to several numerical exam-
ples. To show that the present meshless method is readily applied
to radiative heat transfer in refractive media with complex geome-
tries, we analyze radiative heat transfer in 2-d irregularly-shaped
refractive media with black and diffusely reflecting surfaces. To
the knowledge of the authors, no research works have been carried
out to analyze radiative heat transfer in 3-d refractive media rigor-
ously. Thus, we also apply the present method to analyze radiative
heat transfer in cubic refractive index media.

2. Analysis

2.1. Physical model and integral equations for radiative heat transfer
in refractive media with diffusely reflecting boundary

For a gray participating medium with a continuously VRI, the
radiation transfer equation can be expressed as [30]

n2ðsÞ d
ds

Iðs; X̂Þ
n2ðsÞ

" #
þ bIðs; X̂Þ ¼ Sðs; X̂Þ; ð1Þ

where n denotes the refractive index of the medium, I the radiative
intensity at the curvilinear abscissa s of the curved trajectory, as
shown in Fig. 1, X̂ the unit vector into the direction of intensity, b
the extinction coefficient, and S the source function defined as

Sðs; X̂Þ ¼ bð1�xÞIbðsÞ þ bx
4p

Z
4p

Iðs; X̂0ÞpðX̂; X̂0ÞdX̂0 ð2Þ

withx denoting the scattering albedo and p denoting the scattering
phase function. In general, the scattering phase function can be
expressed in terms of X̂ðl;/Þ and X̂0ðl0;/0Þ as

pðl;/;l0;/0Þ ¼
XK
j¼0

XK
k¼j

ð2� d0jÞakjP j
kðlÞP j

kðl0Þ cos½jð/� /0Þ�; ð3Þ

where K is the order of scattering, l the cosine of the polar angle h,

/ the azimuthal angle, d0j Kronecker delta, akj ¼ ak
ðk�jÞ!
ðkþjÞ! with a0 ¼ 1,

0 6 j 6 K , j 6 k 6 K, P j
k the associated Legendre function. Substitut-

ing Eq. (3) into Eq. (2), we obtain the expression

Sðs; X̂Þ ¼ bð1�xÞIbðsÞ þ bx
4p

XK
j¼0

XK
k¼j

ð2� d0jÞakjP j
kðlÞ

� ½cosðj/ÞMkjðsÞ þ sinðj/ÞM�
kj�; ð4Þ

Nomenclature

a1 coefficient of the linear anisotropic phase function [–]
akj coefficient of the phase function [–]
ai coefficient vector of parametric equations [m]
akjðrÞ vector of functions, defined in Eq. (28a) [–]
a�11ðrÞ vector of functions, defined in Eq. (29a) [–]
bi coefficient of parametric equations [m]
bkjðrÞ vector of functions, defined in Eq. (28b) [–]
b�
11ðrÞ vector of functions, defined in Eq. (29b) [–]

ckjðrÞ vector of functions, defined in Eq. (28c) [–]
c�11ðrÞ vector of functions, defined in Eq. (29c) [–]
di distance between r and ri [m]
dkjðrÞ vector of functions, defined in Eq. (28d) [–]
d�
11ðrÞ vector of functions, defined in Eq. (29d) [–]

ekjðrÞ function, defined in Eq. (28e) [Wm�2]
e�11ðrÞ function, defined in Eq. (29e) [Wm�2]
�f function, defined in Eq. (23) [Wm�2]
I radiative intensity [Wm�2 sr�1]
J radiosity [Wm�2]
K order of the phase function [–]
L length of a cubic medium [m]
mi undetermined coefficient [Wm�2]
mkj vector of undetermined coefficients [Wm�2]
m�

11 vector of undetermined coefficients [Wm�2]
Mkj intensity moment, defined in Eq. (5a) [Wm�2]
M�

kj intensity moment, defined in Eq. (5b) [Wm�2]
n refractive index [–]
n̂w unit normal vector pointing into the medium [–]
Nr number of data points per unit area for 2-d cases [m�2]
p scattering phase function [–]
P j
k associated Legendre function [–]

r position vector related to original point [m]
r� position vector, defined in Eq. (15) [m]
Rs radius of the outer semicircle [m]
s curvilinear abscissa or path length [m]

s� path length, defined in Eq. (16) [m]
S source function [Wm�3 sr�1]
t variable defined by dt ¼ ds=n [m]
T local temperature [K]
T optical ray vector [–]
w weight coefficient [–]
yRBF�IEM vector of the quantities to be compared [–]
ybenchmark vector of benchmark solutions [–]

Greek symbols
b extinction coefficient [m�1]
d0j Kronecker delta [–]
e parameter for controlling the shape of RBFs [m�1]
ew emissivity of the wall [–]
1 variable, 1 ¼ ds=dt [m�1]
h polar angle [rad]
q reflectivity [–]
r Stefan-Boltzmann constant [Wm�2 K�4]
l directional cosine, l ¼ cos h [–]
s variable, defined in Eq. (17) [–]
sL optical thickness, sL ¼ bL [–]
sR optical thickness, sR ¼ bRs [–]
u azimuthal angle [rad]
U radial basis functions [–]
U vector, defined in Eq. (26) [–]
x scattering albedo [–]
X̂ unit vector into a given direction [–]
X solid angle [sr]

Subscripts and superscripts
b blackbody
i initial position or index of data points
w wall
ðÞ approximation of ðÞ

Y.-B. Hong, C.-Y. Wu / International Journal of Heat and Mass Transfer 118 (2018) 1180–1189 1181



Download English Version:

https://daneshyari.com/en/article/7054832

Download Persian Version:

https://daneshyari.com/article/7054832

Daneshyari.com

https://daneshyari.com/en/article/7054832
https://daneshyari.com/article/7054832
https://daneshyari.com

