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a b s t r a c t

In this study, a two-dimensional linear transition inverse heat conduction problem (IHCP) was solved using
the Generalized Minimal Residual Method (GMRES) in quenching process by water jets. The inverse solu-
tion method was validated by set of artificial data and solution sensitivity analysis was done on data
noise level, regularization parameter, cell size, etc. An experimental study has been carried out on
quenching a rotary hollow cylinder by one row of subcooled water jets. The inverse solution approach
enabled prediction of surface temperature and heat flux distribution of test specimen in the quenching
experiments by using measured internal specimen temperature. Three different boiling curves were
defined in the quenching process of a rotary cylinder. Result obtained by the inverse solution showed
clear footprint of rotation in surface temperature and heat flux on each revolution of cylinder and tem-
perature variation damping from quenching surface toward interior of specimen.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There is continuous industrial demand for more advanced
thermal management methods as a way to stay competitive. As a
consequence, there is an increasing need for better understanding,
prediction and control of the transient thermal responses and tem-
perature distributions in many industrial and material applications
[1,2]. In the steel industry, for example, improved heating and
cooling techniques associated with steel quenching and annealing
is desired to make production more effective, to improve quality,
repeatability and material performance, and to reduce the use of
expensive alloy materials and thus cost.

Quenching can be achieved by several methods, but the use of
liquid water impinging jets is one of the most effective techniques
used in industry. During such a process, water jets are directed
towards the surface of the material to be quenched. Depending
on e.g. water velocity and surface temperature, different boiling
regimes occur at the interface between metal surface and imping-
ing jet(s) [3]. This in turn affects surface heat flux and thereby the
entire spatio-temporal temperature distribution and thus the
quenching process.

There are many parameters affecting surface temperature and
heat flux during quenching by impinging water jet(s). Several
studies have investigated the effect by, e.g., the jets Reynolds num-
ber [4], water subcooling [5,6], rotation- and movement speed of
the test specimen [6,4] and different size and configuration of
the water jets [7–9] on the surface boiling curve. In a recent study,
effect of jet-to-jet spacing, initial quenching temperature and
several other parameters were investigated on cooling rate of
quenching a rotary cylinder [10]. In practice it is very difficult to
accurately measure the temperature and heat flux of the surface
during a quenching process as the measurement device since its
application disturbs the heat flux and cooling process, or cannot
withstand the harsh conditions during quenching. Remote temper-
ature monitoring by IR camera techniques is not an alternative
either, as the surface wetting and boiling would seriously disturb
the measurement in the wetted region. Altogether, the vast num-
ber of parameters that affects the cooling process together with
the difficulty of determining surface temperature and heat flux
distributions makes impinging jet quenching far from fully under-
stood. There is a need for new and improved methods and tech-
niques for both measurement and analysis of measurement results.

One way to circumvent some of the surface measurement prob-
lems, which is investigated in this study, is to apply an inverse
problem technique to determine the surface temperature and heat
flux based on temperature measurements beneath the surface
(instead of direct measurement). By using an inverse method,
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temperature measured below the surface is used to solve a bound-
ary value problem for the heat conduction equation [11–15]. This
situation is often modeled as a Cauchy problem [16,17,11,18] where
both temperature and heat-flux data are specified at a distance
from the surface.

The Cauchy problem for the heat conduction equation is well
known to be ill-posed [19,11,20]. This means that small measure-
ment errors in the data may seriously disturb and even destroy
the numerical solution. The ill-posed aspect has to be taken care
of, which for example can be accomplished by methods that stabi-
lize the numerical computations. Several such stabilizing methods
have been proposed. One example is to reformulate the Cauchy
problem for the heat conduction equation as an operator equation
Kf ¼ g, where f ðx; tÞ is the surface temperature and gðx; tÞ is the
interior temperature measured by the measurement device, see
e.g. [21,22]. The new operator equation can subsequently be solved
by using the generalized minimal residual method (GMRES) which
has been shown to produce good solutions when applied to ill-
posed problems [23].

In this study, the inverse heat conduction problem of an insu-
lated quenching system including multiple water jets is solved in
order to predict the surface temperature and heat flux of the test
object during the quenching process. Towards this aim, the direct
and inverse problems are described, and a linear operator is
defined in the Arnoldi method to solve the inverse problem. An
experimental setup is presented as an application of the inverse
solution and a mathematical model is defined to reformulate the
problem to well-posed to make it possible to use the linear opera-
tor to solve the inverse problem.

2. The direct and inverse problems

The spatio-temporal surface temperature and heat flux are the
outgoing result of inverse solution by applying known measured
interior temperature of test specimen into the inverse problem.
In order to solve the problem, the first step is to define the forward
problem, i.e., construct a functional relation between an assumed
temperature distribution at the surface and compute the corre-
sponding temperatures at the measurement locations by a numer-
ical simulation. Such a model is useful both for creating test
problems (which is carried out below) that allows an investigation
of the theoretical properties of the problem, and also to serve as a
basis for the algorithm developed for solving the inverse problem,
i.e., finding the unknown surface temperature outgoing from tem-
perature history carried out experimentally below the surface. The
temperature inside the material is governed by the time dependent
heat conduction equation, i.e.,

r � ðkrTÞ ¼ qcpTt; ð2:1Þ
where k is the thermal conductivity, q is the density and cp is the
specific heat capacity of the test specimen’s material. The computa-
tional domain is illustrated in Fig. 1 and is expressed in terms of the

radius r, the axial length x, and the time t. The outer surface of the
cylinder is located at radius r ¼ R3 and the inner radius is located at
r ¼ R0. The measurement sensors are mounted inside the material
at radii r ¼ R1 and r ¼ R2. It should be noted that in this section
the measured data at radius r ¼ R1 is not used. Furthermore, a finite
portion of the hollow cylinder along the x-axis for a finite period of
time is considered in the inverse solution.

In order to simplify the notation, the domain is introduced as
follows,

X ¼ fðx; tÞjL1 < x < L2; and 0 6 t 6 tfinalg; ð2:2Þ

where L1 and L2 represent length of the test specimen and tfinal is the
duration of temperature recording in time. Using this notation, the
surface temperature f ðx; tÞ ¼ Tðx; t;R3Þ is a function defined on the
domain ðx; tÞ 2 X.

In order to make the description complete, initial and boundary
conditions need to be defined. On the sides of the model, i.e., for
x ¼ L1 and x ¼ L2, it is assumed that Tx ¼ 0, i.e., that the sides are
thermally insulated. This can be seen as a symmetry boundary con-
dition on the behavior of Tðx; t; rÞ outside the segment L1 < x < L2.
The interior surface of the hollow cylinder is assumed to be a ther-
mally insulated boundary, i.e., Trðx; t;R0Þ ¼ 0.

A fair assumption of the initial condition for the test specimen’s
temperature, i.e., for Tðx;0; rÞ, is more complicated than geometry
boundary conditions because initial condition assumption has sig-
nificant effects on predicted results. One possibility is to consider
the initial temperature of the test specimen to be at steady state

condition, i.e., the function eT ðx; rÞ ¼ Tðx;0; rÞ satisfies the equation

r � ðkreT Þ ¼ 0 for ðx; yÞ 2 X. Another alternative is that test speci-
men is assumed to have a constant initial temperature before
quenching which is a fairer assumption for quenching applications
and is considered in the present case.

2.1. The linear operator equation

As mentioned above it is assumed that the test specimen is ini-
tially at a constant temperature. The mathematical model is then
as follows: Find T :¼ Tðx; t; rÞ 2 C2ðX� ðR0;R3ÞÞ \ C1ð�X� ½R0;R3�Þ
such that

ðkTxÞx þ 1
r ðrkTrÞr ¼ qcpTt ; in X� ðR0;R3Þ;

Tðx; t; rÞ ¼ f ðx; tÞ; on X� fR3g;
kTrðx; t; rÞ ¼ 0; on X� fR0g;
Txðx; t; rÞ ¼ 0; for x ¼ L1 ; and x ¼ L2;

Tðx;0; rÞ ¼ f ðx;0Þ; on ðL1; L2Þ � ðR0;R3Þ � f0g;

8>>>>>><
>>>>>>:

ð2:3Þ

where f ðx;0Þ is a constant function in time.
In order to formally define the operator mapping the surface

temperature onto the measurement locations, the function space
is introduced
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Fig. 1. Computational domain illustration.
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