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a b s t r a c t

In this work, we develop a two-phase lattice Boltzmann method (LBM) to simulate axisymmetric thermo-
capillary flows. This method simulates the immiscible axisymmetric two-phase flow by an improved
color-gradient model, in which the single-phase collision, perturbation and recoloring operators are all
presented with the axisymmetric effect taken into account in a simple and computational consistent
manner. An additional lattice Boltzmann equation is introduced to describe the evolution of the axisym-
metric temperature field, which is coupled to the hydrodynamic equations through an equation of state.
This method is first validated by simulations of Rayleigh–Bénard convection in a vertical cylinder and
thermocapillary migration of a deformable droplet at various Marangoni numbers. It is then used to sim-
ulate the thermocapillary migration of two spherical droplets in a constant applied temperature gradient
along their line of centers, and the influence of the Marangoni number (Ca), initial distance between dro-
plets (S0), and the radius ratio of the leading to trailing droplets (K) on the migration process is system-
atically studied. As Ma increases, the thermal wake behind the leading droplet strengthens, resulting in
the transition of the droplet migration from coalescence to non-coalescence; and also, the final distance
between droplets increases with Ma for the non-coalescence cases. The variation of S0 does not change
the final state of the droplets although it has a direct impact on the migration process. In contrast, K
can significantly influence the migration process of both droplets and their final state: at lowMa, decreas-
ing K favors the coalescence of both droplets; at highMa, the two droplets do not coalesce eventually but
migrate with the same velocity for the small values of K, and decreasing K leads to a shorter equilibrium
time and a faster migration velocity.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thermocapillary convection is a phenomenon of fluid move-
ment that arises as a consequence of the variation of interfacial
tension at a fluid–fluid interface caused by temperature differ-
ences. It can be employed as a mechanism for driving the motion
of droplets and bubbles immersed in a second fluid. For most flu-
ids, the interfacial tension decreases with increasing temperature,
and the induced thermocapillary stresses (also called Marangoni
stresses) lead to the migration of droplets or bubbles from the
regions of low temperature, where the interfacial tension is high,
to the warmer regions, where the interfacial tension is low. The
thermocapillary migration of droplets and bubbles plays an impor-
tant role in various industrial applications involving microgravity
or microfluidic devices, where bulk phenomena can be negligible
in comparison with interfacial effects due to large surface-to-
volume ratio and low Reynolds number. To date, it has attracted

an increasing amount of research interest worldwide along with
the progress of human space exploration and microfluidic
technologies.

The study on the thermocapillary migration of droplets or bub-
bles dates back to the pioneering work of Young et al. [1], who
derived an analytical expression for the terminal migration veloc-
ity of an isolated spherical droplet in a constant temperature gra-
dient by assuming that the convective transport of momentum
and energy are negligible. Since then, extensive works on this sub-
ject have been conducted theoretically, experimentally and
numerically, and most of them have been summarized in the
review book by Subramanian and Balasubramaniam [2] as well
as in the recent article by Yin and Li [3]. However, it is still chal-
lenging to conduct precise experimental measurements of the local
temperature and flow fields during the migration process of dro-
plets. Theoretical study based on the method of reflections has
been used for predicting the motion of two well-separated droplets
at an arbitrary orientation relative to the line of droplet centers [4].
Unfortunately, it is restricted to ideally spherical droplets and is
unable to describe the deformation and coalescence of droplets.
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Numerical modelling and simulations can complement theoretical
and experimental studies, providing an efficient pathway to
enhance our understanding of the thermocapillary migration and
interaction of droplets.

A variety of numerical methods have been proposed to simulate
thermocapillary flows with deformed interfaces, and they can
roughly be divided into two categories: one is the interface-
tracking method, which uses the Lagrangian approach to explicitly
represent the interface, such as the front-tracking method [5,3],
boundary-integral method [6], and immersed-boundary method
[7]; and the other is the interface-capturing method, which uses
an indicator function to implicitly represent the interface in an
Eulerian grid, such as the volume-of-fluid (VOF) method [8], and
level-set (LS) method [9]. However, the interface-tracking methods
are not suitable for dealing with interface breakup and coales-
cence, because the interface must be manually ruptured based
upon some ad hoc criteria. The VOF and LS methods require inter-
face reconstruction or reinitialization to represent or correct the
interface, which may be complex or unphysical. Physically, the
interface and its dynamical behavior are the natural consequence
of microscopic interactions among fluid molecules. Thus, meso-
scopic level methods may be better suited to simulate complex
interfacial dynamics in a multiphase system.

The lattice Boltzmann method (LBM) is known to be capable of
modeling interfacial interactions while incorporating fluid flow as
a system feature. It is a pseudo-molecular method based on parti-
cle distribution functions that performs microscopic operations
with mesoscopic kinetic equations and reproduces macroscopic
behavior. The LBM has several advantages over traditional CFD
methods such as the ability to be programmed on parallel comput-
ers and the ease in dealing with complex boundaries [10]. Besides,
its kinetic nature provides many of the advantages of molecular
dynamics, making the LBM particularly useful for simulating mul-
tiphase, multicomponent flows. A number of multiphase, multi-
component models have been proposed in the LBM community,
and they can be classified into four major types: color-gradient
model [11], phase-field-based model [12–14], interparticle-
potential model [15], and mean-field theory model [16]. These
models have gained great success in simulating multiphase flow
problems with a constant interfacial tension [17,10]. Based on
the color-gradient model, we proposed the first LBM model to sim-
ulate thermocapillary flows, through which we for the first time
demonstrated numerically that the droplet manipulation can be
achieved through the thermocapillary forces induced by the laser
heating [18]. This model was later extended to deal with fluid-
surface interactions [19]. In addition, we developed two phase-
field-based thermocapillary models with one focusing on high-
density-ratio two-phase flows [20] and the other on modelling
fluid-surface interactions [21]. The thermocapillary color-
gradient model inherits a series of advantages of the model by Hal-
liday and his coworkers [22,23], such as low spurious velocities,
high numerical accuracy, strict mass conservation for each fluid
and good numerical stability for a broad range of fluid properties,
and its three-dimensional (3D) version is capable of simulating
the axisymmetric thermocapillary migration of two spherical dro-
plets subject to a constant temperature gradient in an infinite
domain, as considered in this work. Such a treatment, however,
does not take the advantage of the axisymmetric property of the
thermal flow and usually needs large computational costs. Alterna-
tively, one can develop an axisymmetric version of the color-
gradient LBM that allows for the solution of thermocapillary flows
at the computational cost of a 2D simulation.

In this work, an axisymmetric two-phase LBM, developed on
the basis of the Cartesian thermocapillary model of Liu et al.
[18], is presented to simulate thermocapillary flows. This
method simulates the axisymmetric two-phase flow through a

multiple-relaxation-time (MRT) color-gradient model, in which
the single-phase collision, perturbation and recoloring operators
are all presented with the axisymmetric effect taken into account
in a simple and computational consistent manner. An additional
lattice Boltzmann equation is also introduced to describe the evo-
lution of the axisymmetric temperature field, which is coupled to
the interfacial tension by an equation of state. The capability and
accuracy of this method are first tested by two benchmark cases,
i.e. Rayleigh–Bénard convection in a vertical cylinder and thermo-
capillary migration of a deformable droplet at various Marangoni
numbers. It is then used to simulate the thermocapillary migration
of two spherical droplets subject to a constant temperature gradi-
ent along their line of centers, in which the influence of the Maran-
goni number, initial distance between the centers of two droplets,
and the radius ratio of the leading to trailing droplets on the migra-
tion process is systematically investigated. To the best of our
knowledge, the present method is the first axisymmetric thermo-
capillary LBM, and the study on the thermocapillary migration
and interaction can provide useful suggestions and guidance for
the design and optimization of the future space experiments.

2. Numerical method

In this section, we present an axisymmetric version of the color-
gradient LBM for thermocapillary flows, and it is developed on the
basis of our previous Cartesian model [18], in which the capillary
and Marangoni forces are both modeled using the concept of the
continuum surface force [24], and the temperature is solved by a
passive scalar approach and coupled with the flowfield through
an equation of state. In the color-gradient LBM, two sets of distri-

bution functions f Ri and f Bi are introduced to represent the ‘‘red”
and ‘‘blue” fluids. The total distribution function is defined by

f i ¼ f Ri þ f Bi , which undergoes a collision step as

f yi ðx; tÞ ¼ f iðx; tÞ þXiðx; tÞ þUi; ð1Þ
where f iðx; tÞ is the total distribution function in the ith velocity

direction at the position x and time t; f yi is the post-collision distri-
bution function, Xi is the single-phase collision operator, and Ui is
the forcing term. The single-phase collision operator is designed
to recover the correct macroscopic equations of incompressible
axisymmetric flows in each single-phase region. For the axisym-
metric flows with an axis in the z-direction, the single-phase colli-
sion operator is given by [25,26]

Xiðx; tÞ ¼ �
X
j

ðM�1SMÞij f jðx; tÞ � f eqj ðx; tÞ
h i

þ dthiðxþ eidt=2; t þ dt=2Þ;

ð2Þ
which adopts the MRT model [27] instead of the Bhatangar–
Gross–Krook (BGK) approximation in order to enhance the numer-
ical stability and reduce unphysical spurious velocities. In the above
equation, f eqi is the equilibrium distribution functions of f i;M is a
transformation matrix; S is a diagonal relaxation matrix; and hi is
a source term defined at the position ðxþ eidt=2Þ and time
ðt þ dt=2Þ, where dt is the time step, and ei is the lattice velocity
in the ith direction. For the two-dimensional 9-velocity (D2Q9)
model, ei is defined as e0 ¼ ð0;0Þ; e1;3 ¼ ð�c;0Þ; e2;4 ¼ ð0;�cÞ; e5;7 ¼
ð�c;�cÞ, and e6;8 ¼ ð�c;�cÞ, where c ¼ dx=dt with dx being the lat-
tice spacing.

The equilibrium distribution function is obtained by a second
order Taylor expansion of Maxwell–Boltzmann distribution with
respect to the local fluid velocity u:

f eqi ¼ qwi 1þ ei � u
c2s

þ ðei � uÞ2
2c4s

� u2

2c2s

" #
; ð3Þ
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