
Absolute instability: A toy model and an application to the
Rayleigh–Bénard problem with horizontal flow in porous media

Antonio Barletta a,⇑, Leonardo S. de B. Alves b

aDepartment of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
b Laboratório de Mecânica Teórica e Aplicada, Departamento de Engenharia Mecânica, Universidade Federal Fluminense, Rua Passo da Pátria, 156, bloco E, sala 216, São Domingos,
Niterói, RJ 24210-240, Brazil

a r t i c l e i n f o

Article history:
Received 13 June 2016
Received in revised form 17 August 2016
Accepted 17 August 2016

Keywords:
Porous medium
Darcy’s law
Convection
Rayleigh–Bénard problem
Absolute instability
Steepest descent approximation

a b s t r a c t

The concept of absolute instability is surveyed and applied to the study of the Rayleigh–Bénard problem
in a horizontal porous layer with longitudinal flow. The survey is aimed to provide a simple introduction
to absolute instability by employing a toy model based on a one-dimensional Burgers’ equation. The
method of analysis is based on the steepest descent approximation, for large times, of the Fourier integral
expressing the wavepacket perturbation of the basic solution. The analysis of Burgers’ equation is a suit-
able arena for the illustration of the elementary features of absolute instability. Then, the onset of abso-
lute instability in a horizontal porous layer with a prescribed wall temperature difference between the
boundaries and subject to a longitudinal flow is analysed. The seepage flow is modelled through
Darcy’s law by assuming a finite Darcy–Prandtl number. It is shown that the transition from convective
to absolute instability occurs at supercritical conditions, except for the limiting case when the horizontal
flow rate is vanishingly small. In this special case, corresponding to the Darcy–Bénard problem, the con-
dition of convective instability yields also absolute instability. The effects of the governing parameters,
the Péclet number and the Darcy–Prandtl number, on the onset of absolute instability are studied.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Linear instability of a basic stationary flow in fluid mechanics is
investigated by testing the response of the basic flow to normal
modes of perturbation with a vanishingly small amplitude. The
resulting eigenvalue analysis yields a neutral threshold to instabil-
ity. In the simplest cases, this threshold can be represented as a
neutral stability curve drawn in the two-dimensional ðk;RÞ space,
where k is the wave number and R is the parameter driving the
transition to instability. In different sample cases, R can be either
the Reynolds number, the Rayleigh number, or the Marangoni
number. The point along the neutral stability curve where R is min-
imum yields simultaneously the critical wavenumber, kc , and the
critical parameter, Rc . A stable response to a normal mode of per-
turbation occurs when R < Rc , while instability is for R > Rc. Actu-
ally, normal modes of perturbation are just the Fourier
components of a disturbance, represented as a wavepacket, acting
on the basic stationary flow. The wavepacket is expressed as a
Fourier integral over all possible normal modes with different
wavenumbers. It is clear that supercritical regime ðR > RcÞ is a

necessary condition for an unstable evolution (growth) of the
wavepacket at a fixed position and for large times, but this condi-
tion is generally not sufficient. A wavepacket may be damped in
time at any fixed position, for large times, even if R > Rc . This
may be the case when the basic stationary flow rate in a given
direction is nonzero. In this case, growing wavepacket perturba-
tions may be convected away before their growth for large times
can be recorded by an observer standing at a fixed position. The
regime where perturbation wavepackets grow for large times at
any given position is called absolute instability. Here, the adjective
‘‘absolute” is meant to mark a distinction with respect to the super-
critical regime ðR > RcÞ, usually called convective instability. If con-
vective instability means R > Rc , absolute instability means R > Ra

where Ra is not less than Rc .
The concept of absolute instability was developed more than

fifty years ago in the area of plasma physics [1–3], but its interest
for fluid mechanics was soon recognised and reported in classical
textbooks such as Landau and Lifshitz [4], Drazin and Reid [5], or
the more recent Schmid and Henningson [6]. Several papers on
the absolute instability of fluid flows have been published in the
past decades surveying the main physical and mathematical
aspects of this topic. Among the many, we mention Huerre and
Monkewitz [7,8], Carrière and Monkewitz [9], Suslov [10], and
Juniper et al. [11].
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The analysis of the transition from convective to absolute insta-
bility with respect to seepage flows in porous media is relatively
recent and the literature is not abundant [12–21]. The description
of the methods to investigate the transition to absolute instability
presents conceptual and mathematical difficulties that may dis-
courage most of the people actively engaged in the research on
the instability in porous media. This paper aims to clarify and,
wherever possible, simplify these methods. One of the elements
that can induce some confusion is the link between analysis of
absolute instability and use of spatially growing and time-
periodic normal modes, also called spatial modes. The use of such
modes is perfectly justified in special studies dealing with the
streamwise diffusion of time-periodic oscillations imposed at a
fixed position, say the inlet section of a given flow. However, spa-
tial modes are not strictly necessary in the study of transition to
absolute instability, as it will become clear in the forthcoming sec-
tions. Our approach to absolute instability is entirely based on the
steepest descent approximation, which describes the large time
behaviour of a perturbation wavepacket. The basic concepts and
methods are illustrated by employing a toy model of unstable flow,
based on Burgers’ equation. Then, the transition to absolute insta-
bility is analysed for a porous medium flow subject to a vertical
temperature gradient. The seepage flow, described by Darcy’s law
with a finite Darcy–Prandtl number, turns out to display a convec-
tive instability that has been analysed by Dodgson and Rees [22].
We will show that the instability may turn from convective to
absolute under supercritical conditions, whenever the Péclet

number associated with the basic flow is nonzero. This study is
based on an analytical dispersion relation, so that the numerical
work just relies on simple algorithms for root finding, such as
the Newton–Raphson method.

2. A simple example: Burgers’ equation

A very simple example to start illustrating the concepts of con-
vective instability and absolute instability is given by the one-
dimensional Burgers’ equation,

@W
@t

þW
@W
@x

¼ @2W
@x2

þ R W �W0ð Þ; ð1Þ

where R 2 R and W0 2 R, R being the set of real numbers. Evidently
W ¼ W0 is a basic solution of Eq. (1).

The choice of Burgers’ equation as a toy model for the illustra-
tion of the method is made for its pedagogical value. This equation
is a prototypical convection–diffusion equation that mimics some
of the basic physical features of a fluid flow system. Despite its
poor connection to the real-world fluid flows, with Burgers’ equa-
tion the concept of absolute instability can be illustrated quite
effectively without the distraction of mathematical complexities.

2.1. Stability analysis

A linear stability analysis of the constant solution, W ¼ W0, is
carried out by perturbing it, namely by substituting

Nomenclature

a small distance in the complex k plane, Eq. (25)
A;B constants, Eq. (61)
ca acceleration coefficient
C; C� paths in the complex k plane
C constant amplitude
C;R set of complex numbers, set of real numbers
D differential operator, Eq. (39)
DL linear differential operator, Eq. (41)
FðtÞ function of time, Eq. (11)
g gravity acceleration
g modulus of g
H channel height
i imaginary unit
k wavenumber
k0 saddle point
k1 constant wavenumber
K permeability
m integer, Eq. (24)
n integer, Eq. (61)
p positive integer, Eq. (21)
P� solutions of Eq. (68) given by Eq. (70)
Pe Ṕeclet number, Eq. (54)
Pr Darcy–Prandtl number, Eq. (48)
r polar coordinate in the k plane, Eq. (20)
R parameter driving the transition to instability
Ra Darcy–Rayleigh number, Eq. (50)
Re;Im real part, imaginary part
SðxÞ source term, Eq. (39)
t time, Eq. (47)
T temperature, Eq. (47)
T0 reference temperature
u;v x and y components of velocity, Eq. (47)
U0 constant horizontal channel velocity

w perturbation of W, Eqs. (2) and (40)
W solution of Burgers’ equation, Eq. (1)
W0 basic solution of either Eq. (1) or Eq. (39)
x; y; z Cartesian coordinates, Eq. (47)

Greek symbols
b thermal expansion coefficient
c dimensionless parameter, Eq. (48)
C Euler’s gamma function
d Dirac’s delta function
dk infinitesimal wavenumber increment
DT reference temperature difference
e perturbation parameter, Eqs. (2) and (55)
h argument of kðpÞðk0Þ
H temperature perturbation, Eq. (55)
, average thermal diffusivity
k complex growth rate, Eqs. (5), (42) and (58)
m kinematic viscosity
n volumetric heat capacity ratio
u polar coordinate in the k plane, Eq. (20)
/ðkÞ function of k, Eq. (11)
w streamfunction perturbation, Eq. (55)
W streamfunction, Eq. (52)
W0; T0 basic solution, Eq. (54)
x angular frequency, Imfkg

Superscripts, subscripts

ˆ Fourier transform
� complex conjugate
a threshold to absolute instability
c critical value
r; i real part, imaginary part
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