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a b s t r a c t

Anomalous behavior of Isopropyl alcohol transport in mesoporous silica is experimentally and theoreti-
cally investigated. Fitting of the experimental data by the solutions of the second Fick’s law with various
pore geometries shows no coincidence between the experimental data and theoretical curves. We
demonstrate that experimental data are in an excellent correspondence with the solution of the time-
fractional diffusion equation with fractional order value ranging from 1.07 to 1.3, obtained for boundary
conditions that correspond to the experimental conditions. These findings reveal that isopropyl alcohol in
mesoporous silica may exhibit anomalous mass transfer behavior because of geometrical restrictions of
silica pores.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mass transfer processes with memory effects are described by
the time-fractional diffusion equation [1]. Memory effects concern-
ing temporal non linearity may be explained as time-scaled
inequalities between particles jumps’ time so that in case of
time-fractional movement the current position of a moving parti-
cle is unknown at a particular moment of time. However, for stan-
dard diffusion the mean square displacement (MSD) of the
diffusing species is linear with respect to time and may be defined
as a product of time and diffusion coefficient [2].

If mass transfer process exhibits memory effects, Brownian
motion no more holds for this process and the second Fick’s law
is useless for describing the diffusing species’ motion [3]. There-
fore, the time-fractional diffusion equation is introduced for
describing this unusual phenomenon. Depending on the order of
the fractional derivative, different types of anomalous transport
are reported. For fractional order 0 < a < 1 holds sub-diffusive
regime of transport, which is slower comparing to normal diffu-
sion, and for 1 < a < 2 holds super-diffusive regime of transport,
which is faster in comparison with Fickian transport [4,5]. These
types of transport typically occur in the media with fractal or por-
ous structure [6]. Contrary to standard diffusion, based on Brown-
ian motion model, for which the MSD is proportional to time,
anomalous diffusion is characterized by the MSD proportional to

the non-integer order power of time [7]. Continuous time random
walk model is most often used for describing the statistical proba-
bility of particle position, based on fractional diffusion equation
concerning the Levy diffusion process [8–10]. The order of frac-
tional derivative and diffusion constant may be easily determined
from the time-fractional diffusion equation solution, fitted to the
experimental data. However, the physical meaning of the mea-
sured parameters is not always clear, because of phenomenological
merits of the corresponding approach.

The physical origins of the anomalous diffusion itself and its
regime differ for each particular case and may be explained by dif-
ferent reasons concerning the nature of the system investigated
[11]. This differs from traditional Fickian and Knudsen diffusion,
which are of clear physical reasons and are governed by Wiener
Brownian motion of Markovian nature and pores of smaller size
than the mean free path of the species respectively. For instance,
in viscoelastic media the anomalous sub-diffusive regime is driven
by the additional degrees of freedom, the presence of traps in chao-
tic systems is also the reason of the anomalous diffusion [11], frac-
tal structure of solid media leads to non-usual diffusion [6]. Inertial
effects of diffusive transport, concerning the case of dominating
the particle’s inertia before friction forces between the particles,
sometimes causes the deviation from standard Fickian transport
[12]. For the gaseous transport in the restricted porous media the
kinetics of mass transfer is defined by the retention time of the dif-
fusing species in the pores of the solid media. The retention time
may be associated with geometrical confinements inside the pores
and the adsorption process of the diffusing species on the internal
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surface of the pores. The adsorption process leads to different time
intervals that the diffusing molecules spend at one site. The latter
may be associated with the energetic disorder of the surface of
solid porous media. These time delays govern the nonlinearity
and the memory effects of random particles movements, which
results into Brownian motion of non-Markov nature, described
by the continuous time random walk model, and replacing the
integer order temporal derivative in the corresponding transport
equation by the fractional derivative [13].

The aforementioned considerations are in agreement with the
following findings. Skaug et al. [14] demonstrated that the genera-
tion of the random process in terms of the restricted transport
models strongly depends on the configuration of the obstacles in
the free space of the media, where the mass transfer process
occurs. The distance of the single molecule movement affected
by the geometrical confinements defines the fractional exponent.
Moreover, Nicolau et al. [15] showed that the anomalous diffusion
origin is affected by different types of the interactions between the
diffusing molecules and the obstacles of the media, e.g. the interac-
tions of the protein molecules with fixed confinements, lipid
obstructions, and cytoskeletal blocks. The overall effect of the
interactions of different types is roughly additive. However,
notwithstanding that these experimental results concern the
investigation of the anomalous diffusion of proteins in the mem-
brane cells of the living organisms we believe that the physical ori-
gin of the anomalous transport provided is also applicable for the
system studied in the current paper.

Another type of transport, which is sometimes called anoma-
lous comparing to standard Fickian diffusion, is Knudsen diffusion.
The latter phenomenon occurs in the porous media in case if the
mean free path of the diffusing species is equal or larger than the
pore diameter. As it was demonstrated by Gopalakrishnan [16]
for aerosol collision rate the transition regime between Fickian
and Knudsen transport may be easily determined only by simple
comparison of the Smoluchowski radius and orientationally aver-
aged projected area of the particle. The influence of the surface
roughness of the porous media on the diffusion in Knudsen regime
was demonstrated by Malek and Coppens [17]. Transport diffusion
has weak dependence on the roughness because of the indepen-
dence of the fluxes on the detailed residence time distribution.
Gaseous self-diffusion in Knudsen regime is strongly affected by
surface roughness, including roughness of the fractal pores. How-
ever, the same considerations are not absolutely true for micro-
scopic self-diffusion in the Knudsen regime [18]. The self-
diffusivity decreases with the increasing of the roughness of the
pores surface. Molecular-scaled fractal surface roughness in case
of Knudsen diffusion regime may significantly increase the selec-
tivity and the conversion of the porous catalysts in heterogeneous
catalytic processes [19]. However, the influence of the pores rough-
ness on the diffusion kinetics is not highlighted in the discussed
works, because they focus only on transport diffusion, concerning
fluxes. The fluxes correspond to the stationary case of the transport
and, therefore, are useless for investigating the dynamical systems,
e.g. mass transfer kinetics.

Theoretical modeling of the fractional behavior of different
physical processes and biological objects is widely used [20,21].
Attempts of description of the natural and social phenomena in
the frame of fractional calculus are also reported. For instance,
molecules and organelles transport in cells of the living organisms
demonstrates anomalous behavior, which is approved by the
experimental observations [22]. Diffusion–reaction kinetics in
chemical systems with non-Fickian dynamics was revisited
recently [23]. However, experimental verification of the time-
fractional diffusion still remains scarce and needs to be investi-
gated in depth.

Non-usual transport through porous media, including silica,
plays important role for industrial engineering, because speeding
up chemical agents’ mass transfer may significantly increase the
efficiency of different chemical processes, concerning sorption,
catalysis and distillation. Silica is widely used in sorption technolo-
gies and catalytic processes due to its unique properties like high
surface area and pore distribution, which are easily controlled dur-
ing its synthesis. Silica has fractal structure because of the singu-
larities of its formation during sol–gel synthesis [24]. For
instance, silica is obtained by inorganic polymerization reaction
which leads to cluster formation with further aggregation to large
inorganic polymer particles [25]. Self-similar relaxations of density
fluctuations with fractional dynamics are typical for silica clusters
[26]. The anomalous transport in silica structure and the corre-
spondence between fractal structure and mass transfer regime in
silica still are not studied in a proper way.

The goal of the present paper is to verify unusual non-Fickian
diffusion regime of isopropyl alcohol in the mesoporous silica,
which is associated with time-fractional diffusion. We demon-
strate that the standard diffusion approach fails to describe the
experimental data in a proper way. Contrary, experimental data
coincide in a good manner with theoretical tests, established in
accordance with the time-fractional diffusion equation.

2. Preliminaries

2.1. Fick’s law and time-fractional diffusion

In non-stationary case diffusion process occurs in accordance
with the second Fick’s law, which for the sake of simplicity we con-
sider in one-dimensional form:

@C
@t

¼ D � @
2C

@x2
ð1Þ

Here C denotes linear concentration of diffusate, mole/cm; D –
diffusion coefficient, cm2/sec; t – time, sec; x – space coordinate,
cm.

If left-side derivative in Eq. (1) is replaced by the non-integer
order derivative of a in the range from 0 to 2, the time-fractional
diffusion equation is arisen:

IaC ¼ K � @
2C

@x2
ð2Þ

where K is fractional diffusion coefficient, cm2/seca. Ia is a fractional
operator. In terms of Caputo fractional integral Ia is given by [27]:
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Here and afterwards m is 1 for 0 < a < 1, and m is 2 for 1 < a < 2,
U(z) is Euler gamma function.

The diffusion equation is commonly solved via application of
Green’s function. For standard diffusion equation Green’s function
is defined as normal Gauss distribution [28]:

Gðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � p � D � t

p � exp � x2

4 � D � t
� �

ð4Þ

Spatial Fourier and temporal Laplace transform of Eq. (2) leads
to the time-fractional diffusion equation in terms of complex vari-
ables [29,30]:

Cðk; sÞ ¼ sa�1

sa þ K � ð�i � kÞ2
ð5Þ

Here k and s are the complex number frequency.

494 A.A. Zhokh et al. / International Journal of Heat and Mass Transfer 104 (2017) 493–502



Download English Version:

https://daneshyari.com/en/article/7054908

Download Persian Version:

https://daneshyari.com/article/7054908

Daneshyari.com

https://daneshyari.com/en/article/7054908
https://daneshyari.com/article/7054908
https://daneshyari.com

