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a b s t r a c t

Motivated by the challenge of computer refrigeration, we study the limits set by the transition to
quantum turbulence on the cooling of an array of heat-producing cylindrical nanosystems by means of
superfluid-helium counterflow. The effective thermal conductivity in laminar counterflow superfluid
helium is obtained in channels with rectangular cross section, through arrays of mutually parallel cylin-
ders and in the combined situation of arrays of orthogonal cylinders inside the rectangular channel. The
maximum cooling capacity is analyzed on the condition that turbulence is avoided and that the highest
temperature does not exceed the lambda temperature.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transport has always been a topic of interest for applica-
tions[1–5]. In superfluid helium (He II) it is also interesting both
because of its peculiar ability to flow with very low viscosity and
inside very narrow channels, and because of its high thermal con-
ductivity [6–12]. Currently, He II is often used to cool down and
keep at very low temperatures the superconducting magnets used
in particle accelerators, the measuring instruments assembled in
some satellites, and many other cryogenic operations.

Owing to its features, He II will probably find applications in
miniaturized devices, too. One of these applications could be the
cooling of future quantum computers, i.e., modern devices which
aim to use quantum–mechanical phenomena (as for example
superposition and entanglement) to perform massively parallel
operations on data. In fact, quantum computers require low tem-
peratures to keep, as long as possible, a sufficiently high extent

of quantum coherence of the global wavefunction of their
constituent qubits.

In the present paper, in order to explore more in depth the the-
oretical problems arising in superfluid dynamics, we consider the
helium flow (and the consequent heat-transport problem related
to it) between two parallel planes in the presence of an array of
cylinders orthogonal to them (Refer to Fig. 1 for a qualitative
sketch of this geometry). From the practical point of view, those
cylinders are aimed to model small nanodevices which have to
be kept at low temperature by removing the heat per unit time
_Qj that each of them produces in its operations (as for instance,
the computations). In particular, we aim to obtain the practical
limits to efficient cooling set by the transition to quantum turbu-
lence. For instance, if one has an array of M � N þ 1ð Þ cylindrical
devices, each of one dissipating heat at some rate _Q , which will
be the maximum total heat we will be able to extract from the sys-
tem per unit time avoiding the appearance of quantum turbu-

lence? Given _Q , for instance, which will be the maximum value
of N we will be able to keep at constant temperature by extracting
the dissipated heat? Or given a value of N, which will be the max-

imum value of _Q we may manage to extract? And how do these
limiting values depend on the radius of the cylinders, the
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separation of the cylinders, and the separation between the paral-
lel plates?

The paper runs as following. In Section 2 we write the basic
equations allowing to describe heat transfer in superfluid helium.
In Section 3 we derive in the linear regime the effective thermal
conductivity of He II in a channel with a rectangular cross section
and with an array of transversal cylinders inside it. In Section 4 we
assume that all the internal cylinders are heat sources, and study a
possible way to refrigerate the system. In Section 5 the main
results of the present paper are summarized, with emphasis on

the effects of turbulence. In an Appendix, we provide the
mathematical details of the derivation of the effective thermal con-
ductivity mentioned above.

2. Basic equations for heat transfer in superfluid helium

In the steady-state one-fluid model with v as the barycentric
fluid speed, and with the local heat flux q as internal variable, for
zero net-mass flow, the heat transfer in He II can be described by
the model equations

r � v ¼ 0 ðII:1aÞ
r � q ¼ 0 ðII:1bÞ

rp� g r2v þr2q
ST

 !
¼ 0 ðII:1cÞ

k1rT � gk1
S

r2v þr2q
ST

 !
¼ �q 1þ s1KLð Þ ðII:1dÞ

L3=2 bjL1=2 � qa
ST

� jx0b
d

� �� �
¼ 0 ðII:1eÞ

once nonlinear terms have been neglected [13–16].
In Eqs. (II.1) S means the entropy per unit volume, p pressure, T

temperature, q is the modulus of the local heat flux, s1 is the relax-
ation time of q, and k1 and g can be interpreted as the thermal con-
ductivity and the shear viscosity, respectively, when applied to a
classical fluid [13]. The two material functions k1 and s1 can be
related to the second-sound speed w2 by means of the relation

Fig. 1. Sketch of an array of transversal cylinders symmetrically distributed over a
channel filled by superfluid helium. The channel has a rectangular transversal
section with high aspect ratio. The cylinders are located orthogonally to the plates
and to the heat flow.

Nomenclature

Latin letters
a channel’s width
A channel’s transversal section
b channel’s height
c semi distance between the axes of two consecutive

cylinders
C nondimensional parameter
Cv specific heat per unit mass at constant volume
d channel’s smallest size
K friction coefficient
Keff effective thermal conductivity
l channel’s longitudinal length
L vortex length density of quantum turbulence
M total number of columns of cylinders
n number of columns from a given axis
N total number of rows of cylinders
p pressure
q local heat-flux vector
q modulus of local heat-flux vector
_Q heat per unit time
R radius of cylinder
S entropy per unit volume
T temperature
v barycentric fluid speed
�vn speed of normal component
�vs speed of superfluid component
Vns the relative velocity �vn � �vs

Greek letters
a Reynolds-number function
b coefficient of the rate of destruction of vortices per unit

volume and time

g shear viscosity
H nondimensional temperature
j quantum of circulation
k1 thermal conductivity
q total mass density
qn mass density of normal component
qs mass density of superfluid component
s1 relaxation time of local heat flux
/ nondimensional ratio
u aspect ratio of cross section
x2 second-sound speed
x0 Reynolds-number function

Subscripts
crit critical
cyl cylinder
eff effective
fin final
in initial
lam laminar
q quantum
tot total
turb turbulent
visc viscous
k lambda point

Superscripts
(bath) bath
c cylinder
s superfluid
(tot) total
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