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a b s t r a c t

A linear temporal stability of confined swirling annular liquid layers involving heat and mass transfer at
the gas–liquid interface is presented in this paper. A normal-mode stability analysis that includes the
effect of both swirling and heat transfer is performed. The flow in a gas-center coaxial swirl injector gives
rise to the flow configuration explored in this work. The effects of various non-dimensional parameters
on the instability of the flow are discussed. The heat transfer at the interface has been characterized by
introducing a heat flux ratio between the conduction heat flux and the evaporation heat flux. The heat
and mass transfer at the interface are found to destabilize the flow. Increasing confinement destabilizes
the flow, which is opposite to the condition without heat and mass transfer.

� 2016 Published by Elsevier Ltd.

1. Introduction

Annular liquid layers or sheets are encountered in various
industry applications, e.g. the disintegration of liquid stream and
film cooling. For an annular liquid sheet, the interplay of pressure,
aerodynamic, centrifugal, and surface tension forces gives rise to
surface oscillations. Under certain conditions these oscillations
get amplified to cause instability. The stability of a moving annular
liquid layer or sheet is of importance to the performance and reli-
ability of the equipment involving the annular liquid layer flows.
There are numerous literatures on the instability [13,7,4,15] and
breakup morphology [14,3,16] of annular liquid sheets. However,
most of these studies did not take the effect of heat andmass trans-
fer into account. There are many situations when the effect of mass
and heat transfer across the interface play an essential role in
determining the instability characteristics of the flow.

Heat and mass transfer were first taken into account in the sta-
bility analysis of the flow system by Hsieh [8,9]. It is found that
heat and mass transfer can decrease the growth rate for Ray-
leigh–Taylor instability. The effect of heat and mass transfer were
also considered in the Kelvin–Helmholtz instability. Nayak and
Chakraborty [11] found that heat and mass transfer has a destabi-
lizing effect on the Kelvin–Helmholtz instability of a cylindrical
interface. Adham-Khodaparast et al. [1] found that heat and mass
transfer play a deleterious effect on Kelvin–Helmholtz instability

for a planar flow. Recently, Mohanta et al. [10] studied the stability
of coaxial jets confined in a tube with heat and mass transfer. They
found increasing heat and mass transfer at the interface stabilizes
the flow to small as well as very large wave numbers.

To our knowledge, no stability analyses of confined swirling
annular liquid layers involving heat and mass transfer have been
performed. The objective of the present study is to investigate
the effect of heat and mass transfer at the interface on the stability
of confined swirling annular layers. Effects of various non-
dimensional parameters on the stability are explored in this study.
A non-dimensional heat flux ratio of conduction-to-evaporation
heat transfer, characterizing the effect of heat and mass transfer
at the interface, has been identified in this work. The present
results show that heat and mass transfer plays a significant role
in destabilizing the flow.

2. Problem formulation

The configuration shown in Fig. 1 is a swirling annular liquid
layer confined in a tube, with gas phase in the center. The thickness
of the liquid layer is h. The radius of gas–liquid interface is R. In this
study, the analysis is developed in a cylindrical coordinate (z, r, h).
The coordinate system is chosen so that the z axis is parallel to the
direction of the flowmotion. The model consists of a cylindrical gas
jet with velocity (ug ; vg ; wg), surrounded by co-flowing annular
liquid layer with velocity (ul; v l; wl), where u, v, and w represent
the velocity in z, r, and h directions respectively. Only the effect
of rigid rotation around z axis is considered, hence the angular
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velocity of rotation for liquid layer is defined as b. The liquid and
gas phase have the constant density ql and qg . The surface tension
of liquid was r, and the effect of viscosity is neglected in the pre-
sent work. The bulk temperature of the center gas phase is Tg, the
interface temperature is considered to be Ti and the wall is at a
temperature of Tw. For the case with phase change Ti would be
the saturation temperature.

When disturbances set in, the interface deforms and deviates
away from the equilibrium state. The flow field is disturbed with
the perturbed flow velocity and pressure superimposing on the
base flow velocity and pressure

½ui;v i;wi;pi� ¼ ½�ui; �v i; �wi; �pi� þ ½u0
i;v

0
i;w

0
i;p

0
i�

¼ ½�ui; �v i; �wi; �pi� þ ½ûi; v̂ i; ŵi; p̂i� expðikzþxtÞ ð1Þ
where the over-bar denotes the steady components and the apos-
trophe stands for the perturbation components. The perturbation
components are assumed to be wave-type in perturbation normal
modes, defined mathematically by a real wave number k, and a
complex frequency x ¼ xr þ ixi.

The linearized governing equations for liquid phase can be
obtained by substituting Eq. (1) into the continuity and momen-
tum equations as follows

v̂ l þ r
@v̂ l

@r
þ ikrûl ¼ 0 ð2Þ

ðxþ ik�ulÞv̂ l � 2bŵl ¼ � 1
ql

@p̂l

@r
ð3Þ

ðxþ ik�ulÞŵl þ 2bv̂ l ¼ 0 ð4Þ

ðxþ ik�ulÞûl ¼ � 1
ql

ikp̂l ð5Þ

ŵl can be expressed as Eq. (6) according to Eq. (4)

ŵl ¼ �2b
xþ ik�ul

v̂ l ð6Þ

Also, it can be obtained through Eq. (5) that

xþ ik�ul

ik
@ûl

@r
¼ � 1

ql

@p̂l

@r
ð7Þ

Substituting Eqs. (6) and (7) into Eq. (3), we obtain

1þ 4b2

ðxþ ik�ulÞ2
" #

v̂ l ¼ 1
ik

@ûl

@r
ð8Þ

Substituting Eq. (8) into Eq. (2) gives

@2ûl

@ðkrÞ2
þ @ûl

@ðkrÞ
1
kr

� ûl ¼ 0 ð9Þ

where k ¼ k
ffiffiffi
f

p
; f ¼ 1þ 4b2

ðxþik�ulÞ2
.

Then the solution of Eq. (9) can be written as

ûl ¼ AI0ðkrÞ þ BK0ðkrÞ ð10Þ
The governing equations given in Eq. (3) are subjected to the

following boundary conditions at the wall

v 0
l ¼ 0; and g ¼ 0; at r ¼ rw ¼ Rþ h ð11Þ

where g ¼ ĝ expðikzþxtÞ denotes the displacements of the
interface.

The linearized mass balance at the interface is given by

ql v 0
l �

@g
@t

� �ul
@g
@z

� �
¼ qg v 0

g �
@g
@t

� �ug
@g
@z

� �
ð12Þ

The linearized energy balance at the interface is expressed as
Eq. (13), and the detailed derivation of Eq. (13) can be found in
Mohanta et al. [10]

v 0
l �

@g
@t

� �ul
@g
@z

¼ KgS0ð0Þ ð13Þ

where K ¼ DTkl
ql�ulLR

represents the ratio between conduction heat flux

from the wall to the interface and the evaporation heat flux at the
interface, DT ¼ Ti � Tw. The derivation of S0ð0Þ can be found in
Appendix.

Substituting Eqs. (8) and (10) into Eqs. (11) and (13) gives

B ¼ A
I1ðkRwÞ
K1ðkRwÞ ð14Þ

1

i
ffiffiffi
f

p ½AI1ðkRÞ � BK1ðkRÞ� ¼ ½xþ ik�ul þKS0ð0Þ�ĝ ð15Þ

Arranging l1 ¼ xþ ik�ul þKS0ð0Þ, and combining Eqs. (11) and
(15), it is obtained that

A ¼ i
ffiffiffi
f

p
l1ĝK1ðkRwÞ

K1ðkRwÞI1ðkRÞ � I1ðkRwÞK1ðkRÞ ð16Þ

B ¼ i
ffiffiffi
f

p
l1ĝI1ðkRwÞ

K1ðkRwÞI1ðkRÞ � I1ðkRwÞK1ðkRÞ ð17Þ

Then p̂l will be expressed as follow by combining Eqs. (5) and (10)

p̂l ¼ �ql

ik
ðxþ ik�ulÞ½AI0ðkRÞ þ BK0ðkRÞ� ð18Þ

For gas phase, the linearized governing equations can be writ-
ten as:

v̂g þ r
@v̂g

@r
þ ikrûg ¼ 0 ð19Þ

Fig. 1. Schematic of the model.
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