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A linear stability analysis for the onset of Marangoni convection in a horizontal layer of a nanofluid
heated from below is investigated. The model used for the nanofluid incorporates the effects of
Brownian motion and thermophoresis. The lower boundary of the layer is assumed to be a rigid surface
at fixed temperature while the top boundary is assumed to be a non-deformable free surface cooled by
convection to an exterior region at a fixed temperature. The boundaries of the layer are assumed to be
impenetrable to nanoparticles with their distribution being determined from a conservation condition.
The linear analysis uses spectral methods based on the expansion of eigenfunctions as Chebyshev series.
Stability boundaries for temperature and volume fraction Marangoni numbers are obtained for nanoflu-
ids on either distilled water or ethanol with either alumina or multi-walled carbon nanotubules as
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1. Introduction

Recently, a new class of fluid called a “nanofluid” opened a new
dimension in the study of thermal instability. A nanofluid refers to
a base fluid that contains particles of maximum size 100 nm. Com-
mon heat transfer fluids used as base fluids include water and var-
ious organic fluids such as kerosene, ethylene glycol and ethanol,
while the nanoparticles used include metallic or metallic oxide
particles such as copper, copper oxide, alumina (Al,03) and also
multi-walled carbon nanotubules (MWCNTSs).

The heat transfer properties of fluids can be increased substan-
tially by the presence of solid particles suspended in the fluid.
Many researchers [1-6] have found an increase in the thermal con-
ductivity of ordinary fluids using nanoparticles.

Buongiorno [5] conducted an extensive study of nanofluids and
derived the conservation equations of a non-homogeneous equilib-
rium model of a nanofluid. This model incorporated the effects of
Brownian diffusion and thermophoresis. On the basis of this model,
studies were conducted by many authors (e.g. Tzou [7,8]; Nield
and Kuznetsov [9,10]; Kuznetsov and Nield [11,12]). A book by
Das et al. [13] and a review article by Das and Choi [14] covered
a wide area on heat transfer in nanofluids.
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The flow of nanofluid is of great interest in numerous areas of
modern science, engineering and technology, the chemical and
nuclear industries and bio-mechanics. Nanofluids are not naturally
occurring but are synthesized in laboratories. The choice of
base fluid and particle combination depends on the application
for which the nanofluid is intended. Such fluids are used in
industry as coolants, lubricants, for the delivery of drugs, in heat
exchangers and in micro-channel heat sinks among other
applications [15-17].

The convective instability of nanofluids has been studied by
several authors. Kim et al. [18] investigated analytically the con-
vective instability driven by buoyancy and heat transfer character-
istics of nanofluids. Tzou [7,8] studied the thermal instability of
nanofluids (Rayleigh-Benard convection) and showed that
nanofluids are less stable than regular fluids. Recently Nield and
Kuzentsov [9,10] and Kuznetsov and Nield [11,12] studied the
onset of convection in a horizontal layer of a porous medium sat-
urated by a nanofluid using a model for the nanofluid that incorpo-
rates the effects of Brownian motion and thermophoresis. Yadav
et al. [19,20] considered the linear stability of Rayleigh-Benard
convection in nanofluids with and without rotation, and obtained
a sufficient condition for the existence of overstability. The onset
of convection in a porous medium saturated with a viscoelastic
nanofluid was studied by Sheu [21] who showed that oscillatory
instability is possible for both top and bottom heavy nanoparticle
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distributions. Nield and Kuzentsov [22] studied the onset of
double-diffusive convection in a nanofluid layer. The effect of
internal heating on the onset of Darcy-Brinkman convection in a
porous layer saturated by nanofluid was studied by Yadav et al.
[23]. They found that the internal heat source has a destabilizing
effect on the system. Ramesh and Rana [24] considered the effect
of rotation on a horizontal layer of porous medium saturated by
a nanofluid. The effect of magnetic field on the thermal instability
of nanofluids has been discussed by Gupta et al. [25], Yadav et al.
[26] and Mahajan and Arora [27]. These authors showed that the
presence of a magnetic field has a stabilizing influence. Rotating
nanofluids have been discussed by Yadav et al. [28], Agarwal and
Bhadauria [29] and others.

The general trend for base fluids is that their surface tension
decreases with increasing temperature. For nanofluids, however,
surface tension depends on both temperature and nanoparticle
concentration. Experimental studies for different nanofluids have
reported that the presence of nanoparticles causes surface tension
to be increased [30-32], to be unchanged [33,34] or to be
decreased [4,35].

Marangoni convection for the base fluid is induced by the
dependence of surface tension on temperature. The earliest work
on Marangoni instability in a fluid layer heated from below was
performed by Pearson [36] who showed that, rather than being a
buoyancy driven flow, Benard cells are primarily induced by the
surface tension gradients resulting from temperature variations
across the free surface. Nield [37] showed that for layers of depth
at most 1 mm the buoyancy effect can safely be neglected for most
liquids. The findings of Pearson and Nield have been extended and
polished by many workers for deformable and non-deformable
surfaces (e.g. Takashima [38,39]; Benguria and Depassier [40];
Wilson [41]; Shivakumara et al. [42]; Hashim and Arifin [43];
Shivakumara et al. [44]). For non-deformable surfaces, Marangoni
instability ensues through the mechanism of stationary convec-
tion. However for deformable surfaces overstability is possible
under some conditions.

The earliest work on Rayleigh-Marangoni instability in a layer
of fluid heated from below was performed by Nield [37] who
showed that buoyancy and surface tension reinforce each other
and are tightly coupled. The work of Nield [37] has been extended
and polished by many researchers for deformable and non-
deformable surfaces (e.g. Sarma [45]; Garcia-Ybarra et al. [46];
Benguria and Depassier [40]; Perez-Garcia and Carneiro [47];
Hennenberg et al. [48]; Hashim and Arfin [43]; Zhao et al. [49]).
However, a survey of the literature revealed that no research has
been conducting with regard to the stability of Marangoni convec-
tion in nanofluids. Therefore the object of the present study is to
investigate this problem for several types of nanofluid.

2. Mathematical formulation

Consider an infinite horizontal layer of an incompressible nano-
fluid confined between the planes x; = 0 and x; = d of a rectangu-
lar Cartesian system of coordinates with position vector
X" =Xxje; +x;e, +x;e; with e; directed vertically upwards. Let
T*(t*,x*) and ¢*(t*,x*) denote respectively the Kelvin temperature
and volume fraction of nanoparticles in the fluid at time t* and
position x*. On x; = 0 the nanofluid is assumed to rest on a rigid
boundary which is maintained at a constant Kelvin temperature
To, whereas on x; =d the motion of the nanofluid is driven
by the thermocapillary effect of the surface tension of the nano-
fluid, say y(T", ¢"), but otherwise the surface is non-deformable
and loses heat by convection to an environment at constant
temperature Tj.

2.1. Model equations

This analysis will assume that the layer of nanofluid is very thin
(d < 1 mm), and consequently buoyancy effects can be ignored in
the statement of the momentum equations. Following the work
of Buongiorno [5], Tzou [7,8] and Nield and Kuznetsov [9,10], the
governing equations for a nanofluid in the absence of chemical
reactions and gravity, but in the presence of thermophoresis are
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where V" = V; e; denotes the nanofluid velocity, P* denotes hydro-

static pressure and ¢ denotes the average volume fraction of
nanoparticles. The Boussinesq approximation has been used in the
formulation of Egs. (2)-(4), namely that variations in temperature
and volume fraction of nanoparticles within the layer are suffi-
ciently small that the material properties of the nanofluid may be
treated as constant in all equations with the exception of buoyancy
terms when these are present. Typically the values assigned to
these constant coefficients are computed by averaging the respec-
tive material property across the layer. In the case of nanofluid,
the density, dynamic viscosity and specific heat at constant pres-
sure are given by the respective constitutive equations
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in which p; and C; denote respectively the density and specific heat
of the base fluid, p, and C; denote respectively the density and
specific heat of the nanoparticle material, and g, is the dynamic vis-
cosity of the base fluid. Expression (6) is Brinkman’s model [50] for
dynamic viscosity. Thus the appropriate specifications of the con-
stant material properties in Eqs. (2)-(4) are
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While expressions (8) and (10) are exact results, expression (9)
is @ mean value result for integrals.

The vector J* =J,e, in Egs. (3) and (4) denotes the diffusive
mass flux of nanoparticles and is the sum of contributions from
Brownian and thermophoresis diffusions, namely

. o¢" DraT"\
.l __ps (DB 8Xj* +T0 8X;> 7

where Ty is the Kelvin temperature of the lower boundary of the
nanofluid layer, and Dz and D; (assumed constant) represent
respectively the Brownian and thermophoretic diffusion coeffi-
cients with respective constitutive specifications
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