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a b s t r a c t

This work is concerned with unsteady natural convection heat and mass transfer of a fractional MHD vis-
coelastic fluid in a porous medium with Soret and Dufour effects. Formulated boundary layer governing
equations have coupled mixed time–space fractional derivatives, which are solved by finite difference
method combined with L1-algorithm. Results indicate that the Dufour number (Du), Eckert number
(Ec), Soret number (Sr) and Schmidt number (Sc) have significantly effects on velocity, temperature
and concentration fields. With the increase of Du (Sr), the boundary layer thickness of momentum and
thermal (concentration) increase remarkably. The average Nusselt number declines with the increase
of Du and Ec. The average Sherwood number declines with the increase of Sr, but increases for larger val-
ues of Sc. Moreover, the magnetic field slows down the natural convection and reduces the rate of heat
and mass transfer. The fractional derivative parameter decelerates the convection flow and enhances the
elastic effect of the viscoelastic fluid.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The natural convection heat and mass transfer in a fluid-
saturated porous medium has received considerable attention
due to its wide applications, such as geothermal processes, petro-
leum reservoirs, chemical catalytic reactors, nuclear waste reposi-
tory, etc. The thermal-diffusion (Soret) and diffusion-thermo
(Dufour) effects, which are generally called second order phe-
nomenon of the fluids, become very significant when the temper-
ature and concentration gradients are large. Eckert and Drake [1]
presented the importance of these effects in convective transport
in mixture between gases with very light and medium molecular
weight. Alam and Rahman [2,3] studied numerically Soret and
Dufour effects on convection heat and mass transfer flow past a
vertical flat plate embedded in a porous medium. Partha et al. [4]
considered the effect of double dispersion on free convection from
a vertical surface embedded in a non-Darcy porous medium with
Soret and Dufour effects. Postelnicu [5] analyzed heat and mass
transfer characteristics of natural convection about a vertical sur-
face in porous medium subjected to chemical reaction. Mahdy
dealt with the combined Dufour and Soret effects on convection
flow embedded in porous medium along a heated vertical wavy

surface [6] and from a vertical isothermal plate [7]. Anwar Bég
et al. [8] and Hayat et al. [9] examined the Soret and Dufour effects
on mixed convection heat and mass transfer from a vertical
stretching surface in a Darcian porous medium. Cheng [10] inves-
tigated the Soret and Dufour effects on the boundary layer flow due
to natural convection over a downward-pointing vertical cone in a
porous medium.

More recently, the study of viscoelastic fluids has attracted
much interest for its technological applications. Nonlocal fractional
model of stress–strain provides a flexible tool for modeling vis-
coelastic properties: length scale and order of fractional continua
[11], which are linked to molecular and system theories [12,13],
reflected in the intermittency in the chain segment motions and
in the tendency for the particles to cluster and move in a collective
fashion. Khan et al. [14,15] dealt with an exact solution for the
MHD flow of a generalized Oldroyd-B fluid in porous medium.
Hayat [16–18] concerned with deriving the equation for describing
the MHD flow of a fractional generalized Burgers’ fluid in a porous
space. Xue [19] investigated the flow near a wall suddenly set in
motion for a fractional generalized Burgers’ fluid in a porous
half-space. Tripathi and Anwar Bég [20–25] devoted much effort
in peristaltic transport of a viscoelastic fluid with the fractional
models, which has wide applications in uretral biophysics and
potential use in peristaltic pumping of petroleum viscoelastic
bio-surfactants. Li et al. studied fractional viscoelastic fluid in por-
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ous medium for helical flows of a heated generalized Oldroyd-B
fluid [26] and generalized Maxwell fluid between two infinite par-
allel plates [27]. Guo and Fu [28] induced the flow of the fractional
Jeffreys’ fluid by the impulsive motion of a flat plate in a porous
half space. Yu et al. [29] obtained the optimal estimation of a Rie-
mann–Liouville fractional derivative for a Stokes’ first problem for
a heated generalized second grade fluid. Hameed et al. [30] dealt
with the peristaltic flow of the fractional second grade fluid con-
fined in a cylindrical tube in the presence of magnetic field and
heat source/sink.

However, much of the developments in the theory of fractional
viscoelastic fluids in a porous medium have been mainly restricted
to exact solutions of the cases when the governing equations are
linear. Very little efforts have so far been made to discuss nonlinear
convection terms with fractional derivatives. The purpose of the
present study is to investigate coupled heat and mass transfer with
Soret and Dufour effects by natural convection in a porous medium
subjected to applied magnetic field. The fractional Maxwell model
and modified Darcy’s law are employed to formulate the nonlinear
boundary governing equations with mixed time–space fractional
derivatives. Numerical solutions are obtained by finite difference
method combined with L1-algorithm. The effects of involved
parameters on velocity, temperature and concentration fields are
presented graphically and analyzed in detail to characterize the
complexity of heat and mass transfer of viscoelastic fluid.

2. Mathematical formulation

A two-dimensional unsteady natural convection heat and mass
transfer of a viscoelastic incompressible fluid over a vertical plate
in a porous medium subjected to magnetic field is considered.
The wall is maintained at constant temperature Tw and concentra-
tion Cw, while the uniform ambient temperature and concentration

far away from the plate are T1 and C1 respectively. For Tw > T1
and Cw > C1, an upward flow is induced as a result of the thermal
and concentration buoyancy effect so that the Boussinesq approx-
imation is applicable for both the temperature and concentration
gradient. The schematic diagram of the problem is shown in
Fig. 1, where the x-axis is measured along the plate and y-axis is
taken perpendicular to the plate.

It is assumed that: (i) the fluid and the porous medium are in
local thermodynamic equilibrium; (ii) the porous medium is iso-
tropic and homogeneous; (iii) the properties of the fluid and por-
ous medium are constants except that the influence of density
variation with temperature has been considered only in the
body-force term; (iv) there is no applied voltage and the magnetic
Reynolds number is small, hence the induced magnetic field and
Hall effects are negligible. Under these assumptions, the momen-
tum equation in a porous medium is given by:

Nomenclature

B0 applied magnetic flux density
C (dimensionless) concentration
Cp specific heat capacity
Cs concentration susceptibility
Cw wall concentration
C1 ambient concentration
Cf average skin friction coefficient
Da Darcy number
Dm mass diffusivity
Du Dufour number
Ec Eckert number
g acceleration due to gravity
Gm modified Grashof number
Gr Grashof number
K permeability
kT thermal diffusion ratio
L length of the plate

Greek symbols
a fractional derivative parameter
am thermal diffusivity
bC solutal expansion coefficient
bT thermal expansion coefficient
e porosity
k (dimensionless) relaxation time

Subscripts
w wall condition
1 ambient condition
M magnetic parameter
Nr buoyancy ratio number
Nu average Nusselt number
p pressure
Pr Prandtl number
R Darcy resistance
Sc Schmidt number
Sh average Sherwood number
Sr Soret number
t (dimensionless) time
Tm mean field temperature
T temperature
Tw wall temperature
T1 ambient temperature
u, v (dimensionless) velocity components
x, y (dimensionless) coordinate
l dynamic viscosity
mf kinematic viscosity
h dimensionless temperature
q density
r electrical conductivity
f fluid
m porous medium

Fig. 1. Schematic diagram of the physical system.
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