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a b s t r a c t

In this work, an efficient numerical method with a high accuracy is proposed for solving the heat conduc-
tion problems. In this method, the governing equation of heat conduction in the partial differential equa-
tion form is firstly integrated over the small volume around each node point. In the resulting integrals the
spatial derivatives of the unknown temperature and heat flux disappear. Then the numerical quadrature
is employed to discretize the integrals. Numerical results show that when the same amount of the com-
puter memory and CPU-time is consumed the proposed method can achieve a high accuracy in compar-
ison with the finite volume method (FVM). Furthermore, the proposed method is more accurate than the
finite element method (FEM) and boundary element method (BEM) for multi-dimensional heat conduc-
tion problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of heat conduction is of fundamental importance in
many engineering applications, such as the thermal cooling, ther-
mal protection, and heat exchange problems. The analytic solu-
tions of heat conduction problems are limited by the complex
geometries of the heat conduction media. As the rapid develop-
ment of the computer technology, the numerical solution becomes
a powerful approach for solving the heat conduction problems.
Various numerical methods, such as the finite difference method
(FDM) [1–4], FVM [5–10], FEM [11,12], BEM [13–16], and meshless
method [17–19], have found wide applications in the heat conduc-
tion problems. Among them, the FVM is central to the most well-
established CFD codes, such as CFX/ANSYS, FLUENT, PHOENICS
and STAR-CD. The control volume integration which is imple-
mented in the FVM can keep the conservation of the relevant prop-
erties for each finite size cell, which is one of main attractions of
the FVM. Actually, the control volume integration has another
advantage that it reduces the order of the highest derivative that
appears in the governing equations of fluid flow and heat transfer,
which weakens the requirement of the smoothness of the flow
velocity and temperature field. Along this line, some integration
methods based on the governing equations in the pure integral
equation form have been developed. An axial Green’s function
method (AGM) was proposed for solving multi-dimensional elliptic
boundary value problems [20]. Then it was applied to solve the

Stokes flow [21]. Recently, a local axial Green’s function method
which is the localization of the AGM was developed for solving
the convection–diffusion problems [22]. Similarly, a nonstandard
finite difference scheme based on the Green’s function formulation
was established for solving the reaction–diffusion–convection
problems [23]. Based on the Green’s function in a series form and
the integration formulation, we have proposed an integral equa-
tion approach for simulating the magnetic reconnection phe-
nomenon [24] and the convection–diffusion problems [25]. The
magnetic reconnection phenomenon involves the velocity, mag-
netic and temperature fields of the conducting plasmas. When
the magnetic reconnection phenomena occur, the plasmas flows
are usually turbulent. Therefore, numerical simulations of the
three-dimensional magnetic reconnection phenomena require
huge computer memory and CPU-time. It is of great value to
develop efficient and robust numerical methods with high accu-
racy to simulate the magnetic reconnection phenomena. Although
the magnetic reconnection is quite complicated, it mainly involves
two processes, one is the diffusion (or heat conduction in the
framework of heat transfer); the other is the convection. Thus a
good numerical method for the magnetic reconnection must firstly
solve the heat conduction problems efficiently and accurately. In
the following, a novel numerical method for solving heat conduc-
tion problems is presented. The methodology of this method may
be extended to develop efficient and robust numerical methods
for simulations of the magnetic reconnection phenomena.

2. Governing equation and discretization

Consider the following steady heat conduction equation:
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where T is the temperature field, ðx; y; zÞT is the position coordinate
in the Cartesian coordinate system, kx, ky and kz are respectively the
heat conductivities along x-, y- and z-directions, S is the heat source
term. Eq. (1) can be rewritten into the following form:
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where qx, qy and qz are the heat fluxes along x-, y- and z-direction,
respectively. The Fourier law reads

qx ¼ �kx
@T
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ð3aÞ
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Denote the heat conduction medium as V. The node points

ðxi; yj; zkÞT ði ¼ 0; 1; 2; . . . ;M; j ¼ 0; 1; 2; . . . ;N; k ¼ 0; 1; 2; . . . ;KÞ
are employed to divide the region V. Around the node point
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yj þ 0:5ðyjþ1 � yjÞ, and zk þ 0:5ðzkþ1 � ykÞ, respectively. Note that
the node point is located in the center of the small volume. Integrat-
ing Eq. (2) over the small volume yields
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Sdxdydz. It is evident that after the

integration there are no spatial derivatives of heat fluxes in the
resulting Eq. (4). The integrals in Eq. (4) can be approximated by
applying the mid-point formula, that is
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where k0x ¼ @kx
@x . Note that there is no spatial derivatives of the

temperature field and heat flux in Eq. (6). Applying the mid-point

formula on the integral on the left side Eq. (6), and the trapezoid
formula on the last integral on the right side, yield
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If integrating Eq. (3b) over ½xiþ1; xiþ2�, the similar derivation
gives rise to:
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Similarly, from Eqs. (3b) and (3c) we obtain:
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Substituting Eqs. (7)–(12) into Eq. (5) and rearranging the
resulting terms, yields

aiþ2;jþ1;kþ1Tiþ2;jþ1;kþ1 þ biþ1;jþ1;kþ1Tiþ1;jþ1;kþ1 þ ci;jþ1;kþ1Ti;jþ1;kþ1

þ diþ1;jþ2;kþ1Tiþ1;jþ2;kþ1 þ eiþ1;j;kþ1Tiþ1;j;kþ1 þ f iþ1;jþ1;kþ2Tiþ1;jþ1;kþ2

þ giþ1;jþ1;kTiþ1;jþ1;k ¼ �Siþ1;jþ1;kþ1 ð13Þ
where

aiþ2;jþ1;kþ1 ¼ �kx;iþ2;jþ1;kþ1=ðxiþ2 � xiþ1Þ þ 1
2
k0x;iþ2;jþ1;kþ1

� �

� yjþ3
2
� yjþ1

2

� �
zkþ3

2
� zkþ1

2

� �

biþ1;jþ1;kþ1 ¼ ½kx;iþ1;jþ1;kþ1=ðxiþ2 � xiþ1Þ þ kx;iþ1;jþ1;kþ1=

ðxiþ1 � xiÞ� yjþ3
2
� yjþ1

2

� �
zkþ3

2
� zkþ1

2

� �
þ ½ky;iþ1;jþ1;kþ1=

ðyjþ2 � yjþ1Þ þ ky;iþ1;jþ1;kþ1=

ðyjþ1 � yjÞ� xiþ3
2
� xiþ1

2

� �
zkþ3

2
� zkþ1

2

� �
þ ½kz;iþ1;jþ1;kþ1=

ðzkþ2 � zkþ1Þ þ kz;iþ1;jþ1;kþ1

ðzkþ1 � zkÞ� xiþ3
2
� xiþ1

2

� �
yjþ3

2
� yjþ1

2

� �

ci;jþ1;kþ1 ¼ ½�kx;i;jþ1;kþ1=ðxiþ1 � xiÞ
� 0:5k0x;i;jþ1;kþ1� yjþ3

2
� yjþ1

2

� �
zkþ3

2
� zkþ1

2

� �

286 M. Xu / International Journal of Heat and Mass Transfer 103 (2016) 285–290



Download English Version:

https://daneshyari.com/en/article/7055018

Download Persian Version:

https://daneshyari.com/article/7055018

Daneshyari.com

https://daneshyari.com/en/article/7055018
https://daneshyari.com/article/7055018
https://daneshyari.com

