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a b s t r a c t

This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-
infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objec-
tive is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at
the stagnation surface. The approach is based on computationally solving the governing conservation
equations in similarity form as a boundary-value problem. The formulation considers ideal gases and
incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt,
and Damköhler numbers. Heterogeneous chemistry at the stagnation surface is represented as a single
first-order reaction. A composite Reynolds number represents the combination of stagnation flows with
and without stagnation-surface rotation.

Published by Elsevier Ltd.

1. Introduction

Axisymmetric stagnation flows have the remarkable property
that heat- and mass-transfer fluxes to the stagnation surface can
be highly uniform. This characteristic is technologically valuable
and reactors are designed to exploit the inherent flux uniformity.
Implementations of stagnation flows find numerous applications
in technology, for example chemical-vapor-deposition (CVD) reac-
tors [1–5] and rotating-disk electrodes [6–8], as well as in
laboratory-scale reactors that support fundamental research into
reaction chemistry in such areas as materials deposition, electro-
chemistry, catalysis and combustion [9–21].

The objective of the present paper is to develop general correla-
tions for heat and mass transfer at the stagnation surface. In
dimensionless terms, this means developing correlations for the
Nusselt and Sherwood numbers in terms of their dependence on
the Reynolds, Prandtl, Schmidt, and Damköhler numbers. Achiev-
ing such general correlations depends upon significant assump-
tions and simplifications, including constant properties and
single-step chemistry.

The correlated results provide valuable insights and rules of
thumb for scaling relationships and expected reactor behavior.
For example, knowledge of the heat transfer coefficient (Nusselt
number) is useful in reactor design to determine the required

power to a heated stagnation surface as a function of gas flows,
pressure, etc. in a deposition system. Understanding of the mass-
transfer coefficient (Sherwood number) can provide guidance in
operating-parameter trade-offs when optimizing deposited-
material quality, which might include temperature or pressure
dependence or minimizing parasitic chemistry. Another design
consideration might be understanding the effects of actively heat-
ing or cooling the reactor inlet manifold on expected growth rate.
However, such correlations certainly do not replace more compre-
hensive computational fluid dynamics (CFD) models for detailed
reactor and process design and development [22–25].

1.1. Background

The basic mathematical behavior of stagnation flow were first
recognized and reported by Heimenz in 1911 [26]. In 1936,
Homann extended Heimenz’ planar analysis to include axisymmet-
ric flow [27]. In 1921, von Kármán reported a mathematically anal-
ogous flow in the boundary layer above a rotating disk [28]. These
early research initiatives were based on physical and mathematical
insight and analysis, without the benefit of computational solution.
Both the stagnation and rotating-disk flow analyses led to combin-
ing the continuity and momentum equations into a single third-
order ordinary-differential-equation boundary-value problem.
Although these early papers are historically consequential, they
are practically inaccessible for many readers. The fundamental
theory, derivations, and analyses may be found in more recent
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texts and monographs on fluid mechanics and boundary layers
[29–31,30,32]. The mathematical and computational development
in the present paper follows most closely that reported by Kee et al.
[29].

There is a vast literature concerning stagnation flows and
rotating-disk flows. Historically, these flows have been recognized
as being closely related, but have been modeled as being distinctly
different. In fact, as discussed by Kee et al. [29], the stagnation and
rotating-disk flows, including the semi-infinite and finite-gap
domains, can be represented with a common set of differential
equations.

The historical stagnation-flow literature is based upon assum-
ing a semi-infinite environment above the viscous boundary layer
near the stagnation surface, where the outer flow behaves as an
inviscid potential flow. Although this formulation is appropriate
in some settings (e.g., external aerodynamics), it is not generally
appropriate for confined-flow applications such as CVD reactors
or condensed-phase vessels. As illustrated in Fig. 1, the feed stream
may be introduced at a specified flow rate through a manifold a
some fixed height above the stagnation surface. This so-called
finite-gap setting changes the mathematical characteristics of the
boundary-value problem to be solved [29,33–38]. Specifically, the
finite-gap formulation requires the introduction of an eigenvalue
associated with the radial pressure gradient.

As illustrated by the streamlines in Fig. 1 the velocity field
clearly has two-dimensional content. However, as illustrated by
the shaded background, the scalar fields (e.g., temperature, compo-
sition, and density) depend only on the axial position and are radi-
ally independent. Most applications of practical interest involve
heat and mass transfer, as well as chemical reactions [35,38,39].
The scalar fields remain radially independent even when homoge-
neous chemistry is involved. It is the inherent radial independence
that enables the desired deposition uniformity in chemical vapor
deposition processes.

Fig. 1 shows an inlet manifold and stagnation surface with finite
radial dimensions. Of course, any real reactor must have finite
dimensions as well as external walls that confine the reactive flu-
ids. However, the present analysis is based on ideal stagnation
flow, assuming infinite radial extent of the inlet and the stagnation
surface. Fortunately, to a very good approximation, real reactors
can be designed and operated in regimes that closely reproduce
the ideal flow [40–49].

The following Section presents the governing equations in a
general setting and in dimensionless similarity form. As is usually
the case, the dimensionless equations depend on characteristic
length and velocity scales. The present formulation choses four sets
of characteristic scales to represent the semi-infinite and finite-gap
configurations, with and without stagnation-surface rotation. The
Nusselt and Sherwood numbers follow from the computational
solution of the dimensionless differential equations. Correlated
results are found to depend on a composite Reynolds number that
combines rotating-disk and stagnation-flow behavior.

When considering incompressible fluids, the analysis assumes
constant properties (conductivity, viscosity, diffusion coefficients,
heat capacity). In the case of ideal gases, the Prandtl and Schmidt
numbers are presumed to be constants, which is a very good
assumption. Because the Prandtl number for gases remains essen-
tially constant there is no specific restriction in the formalism on
the temperature dependence of the individual contributing proper-
ties. In fact, they may take their usual temperature dependences,
with virtually no compromise of the model assumptions.

2. Governing equations

Beginning with the full steady-state axisymmetric Navier–
Stokes equations (including thermal and species conservation),
Kee, et al. [29] provide detailed derivations of the stagnation-
flow equations in boundary-value form. In brief, there are two
underlying postulates. First, assume that the streamfunction W
can be represented in a separable form as

Wðz; rÞ ¼ r2UðzÞ; ð1Þ
where UðzÞ is an as-yet unspecified function of z alone. Using the
definition of the axisymmetric streamfunction, it follows directly
that

@W
@r

¼ qur ¼ 2rU; � @W
@z

¼ qvr ¼ �r2
dU
dz

; ð2Þ

where q is the mass density and u and v are the axial and radial
velocities, respectively. Second, assume that temperature and spe-
cies composition are functions of z alone (cf., Fig. 1). With these
assumptions, the axisymmetric Navier–Stokes equations can be
transformed to a system of ordinary differential equations. Then,
there must be a set of boundary conditions that do not contradict
the assumptions. Fortunately, this is the case. For the purposes of
the present paper, homogeneous gas-phase chemistry is neglected.
Without repeating the derivations, the system of governing equa-
tions can be written as:

Mass continuity:

dðquÞ
dz

þ 2qV ¼ 0; ð3Þ

Radial momentum:

qu
dV
dz

þ q V2 �W2
� �

¼ �Kr þ d
dz

ldV
dz

� �
; ð4Þ

Circumferential momentum:

qu
dW
dz

þ 2qVW ¼ d
dz

ldW
dz

� �
; ð5Þ

Thermal energy:

qucp
dT
dz

¼ d
dz

k
dT
dz

� �
; ð6Þ

Species continuity:

qu
dY
dz

¼ d
dz

qD
dY
dz

� �
; ð7Þ

The independent variable z is the height above the stagnation
surface. The dependent variables include the axial velocity u and
the scaled radial velocity V ¼ t=r, where t is the radial velocity
and r is the radial coordinate. The scaled circumferential velocity
is W ¼ w=r, where w is the circumferential velocity. The tempera-
ture is represented as T and Y is the mass fraction of a trace species
in a chemically inert carrier. In the case of a gas, the pressure p and
density q are related via the ideal-gas equation of state.

p ¼ qRT: ð8ÞFig. 1. Illustration of a finite-gap stagnation-flow reactor, where the lower
stagnation surface may rotate.
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