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a b s t r a c t

This paper presents the simple empirical formulas for the accurate evaluation of the origin intensity fac-
tor in singular boundary method (SBM) when the time-dependent diffusion fundamental solution is
employed. These new formulas makes the SBM more fast, straightforward, and efficient for transient dif-
fusion problems while being truly meshless, integration-free and easy-to-implement. Three benchmark
examples are tested to demonstrate the accuracy and efficiency of the proposed scheme. It is shown that
the SBM using these empirical formulas works well especially for one and two-dimensional transient dif-
fusion problems. In the three-dimensional case, we have obtained the SBM empirical formula of the ori-
gin intensity factors at initial time, and numerical experiments on benchmark problems have verified its
efficiency and accuracy. It is worth noting that we need to two different formulas for a specific dimen-
sionality. However, the empirical formula with time variation in three-dimensional case is not available
and still under investigation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion equation models a huge variety of physical problems
in many areas of science and engineering applications and has long
been a very attractive area of research. The boundary element
method (BEM) [1–6] is a powerful and efficient computational
method for the solution of such problems, thanks to its merits of
boundary-only discretization and semi-analytical nature. Most of
the BEM schemes employ time-independent, i.e., steady-state fun-
damental solution, to diffusion equations as the weight functions,
but require treating the time derivative term by using the Laplace
transform [2,3,6] or the finite difference scheme [1], which can be
time-consuming and computationally expensive. Such schemes
involve domain integrals [7] and spoil the boundary discretization
merit. Consequently, the attractiveness of the BEM is largely lost
with the time-independent fundamental solution for transient dif-
fusion equation.

The singular boundary method (SBM) [8–10] is a relatively new
meshless boundary collocation method for the numerical solution
of boundary/initial value problems governed by certain partial dif-
ferential equations. The method involves a coupling between the

indirect BEM [11–14] and the method of fundamental solutions
(MFS) [15,16]. The main idea is to fully inherit the dimensionality
and stability superiorities of the BEM and the meshless and
integration-free properties of the MFS. The advantages of the
SBM over the more classical domain or boundary discretization
methods can be concluded as follows:

(a) The SBM, as a boundary-type method, shares the same
advantages of the BEM over domain discretization methods.

(b) The SBM does not require the task of domain and/or bound-
ary meshing which may otherwise be arduous, time-
consuming and computationally expensive for problems in
complex geometries and high dimensions.

(c) The SBM is not involved with costly integrations which may
be troublesome in the case of the BEMs.

(d) The SBM sidesteps the perplexing fictitious boundary issue
associated with the traditional MFS [16–18], while retaining
mathematically simple, easy-to-program and truly
meshless.

In recent years, the SBM has been successfully applied to the
potential [19], elasticity [20], Helmholtz [10,21], poroelastic wave
[22], Stokes flow [23], etc. Nevertheless, these studies only employ
the steady-state fundamental solution rather than time-dependent
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fundamental solution. Very recently, the method has been
extended to transient diffusion problems using the time-
dependent fundamental solutions [24]. The origin intensity factor
(OIF) that isolates the singularities of the fundamental solutions
is evaluated by the so-called inverse interpolation technique in
[24], which requires selecting sample points and solving equations.
The task can be computationally expensive and numerically
unstable.

Based on the observation and fitting of the diagonal elements of
the SBM interpolation matrix obtained by using the inverse inter-
polation technique, this study proposes the empirical formulas to
accurately evaluate the OIF using time-dependent fundamental
solution. It is shown that the proposed formulas makes the SBM
more fast, straightforward, and efficient since little effort is
required to calculate the OIF.

The outline of the rest of this paper is as follows. Section 2 intro-
duces the governing equations and the boundary/initial conditions
of diffusion problems. And then the SBM formulation and the
empirical formulas for the determination of the OIF are provided
in Section 3. Numerical experiments and discussions are provided
in Section 4. Finally, some conclusions and remarks are drawn in
Section 5.

2. Mathematical formulation

Consider a linear diffusion equation in an open bounded
domain X, and assume that X is bounded by a boundary @X ¼ C.
The governing equation is given by

@uðx; tÞ
@t

¼ kr2uðx; tÞ; x 2 X; ð1Þ

where x is the general spatial coordinate, t the time, k the diffusion
coefficient, and u the scalar variable to be determined. The initial
condition of the diffusion problem is

uðx; t0Þ ¼ �u0; x 2 X; ð2Þ
and the Dirichlet and Neumann boundary conditions are

uðx; tÞ ¼ �uðx; tÞ for x 2 CD; ð3Þ

qðx; tÞ ¼ @uðx; tÞ
@n

¼ �qðx; tÞ for x 2 CN; ð4Þ

where CD and CN indicate the parts of which the Dirichlet and Neu-
mann boundary conditions are prescribed, respectively. t0 repre-
sents initial time, n denotes the outward normal vector, the
overline quantities �u0, �u and �q indicate the given values.

The fundamental solution of governing equation (1) is given by

u�ðx; t; n; sÞ ¼ e
�jx�nj2
4kðt�sÞ

½4pkðt � sÞ�n=2
Hðt � sÞ; ð5Þ

where jx� nj denotes the Euclidean distance between points x and n

in Rn, n is the spatial dimension number, and HðtÞ the Heaviside step
function.

3. The singular boundary method using time-dependent
fundamental solution of diffusion equation

3.1. The SBM formulation

Similar to the MFS, the SBM uses the time-dependent funda-
mental solution of diffusion equation as the basis function of its
interpolation. Unlike the MFS, the SBM sidesteps the perplexing
fictitious boundary issue associated with the former by means of
the introduction of origin intensity factors to isolate the singulari-
ties of the fundamental solutions and to allow the coincidence of

the source and collocation points as shown in Fig. 1. With this idea
in mind, the solution can be approximated by a linear combination
of fundamental solution as follows

uðxi; tiÞ ¼
XN¼N1þN2

j¼1; j–i

aju�ðxi; ti; nj; sjÞ þ aiuii; ð6Þ

where xi represents the location of the field points, and nj gives the
location of the source points, ti and sj are the time of the field and
source points, respectively, N1 and N2 the number of initial and
boundary source points, and aj the undetermined coefficients. uii

are defined as the origin intensity factors, i.e., the diagonal elements
of the SBM interpolation matrix. It is observed that for xi ¼ nj and
ti ¼ sj, uii are singular, a fact that requires some special treatments.
The key point in achieving the required accuracy and efficiency of
the SBM is the accurate evaluation of the origin intensity factors.

3.2. Inverse interpolation technique for origin intensity factors

The origin intensity factors uii for Dirichlet boundary conditions
present a weak singularity and can be calculated by using the
inverse interpolation technique as summarized below.

Step 1. Let us assume a pure Dirichlet problem with all the
boundary values set as �usðx; tÞ, where �usðx; tÞ, named as sample
solution hereafter in this paper, is an arbitrary known particular
solution, such as

�usðx; tÞ ¼ sinðxÞe�kt þ 1; for 1D; ð7Þ

�usðx; y; tÞ ¼ ðsinðxÞ þ sinðyÞÞe�kt þ 1; for 2D; ð8Þ

�usðx; y; z; tÞ ¼ ðsinðxÞ þ sinðyÞ þ sinðzÞÞe�kt þ 1; for 3D: ð9Þ
And then some sample points yk need to be placed inside the

physical domain. It is noted that the sample points yk do not coin-
cide with the source points nj, and the sample points number Nk

should not be fewer than the physical boundary source node num-
ber N. In this study, we choose Nk ¼ N sample points which coin-
cided with the source points in the spatial position, but at
different time levels.

Step 2. Using the interpolation formula (6), we can then deter-
mine the influence coefficients bj by the following linear equations

usðyk; tkÞ ¼
XNk

j¼1

bju
� yk; tk; nj; sj
� �

: ð10Þ

Step 3. Replacing the sample points yk with the boundary collo-
cation points xi, the SBM interpolation matrix of the diffusion prob-
lem can be written as

usðxi; tiÞ ¼
XNk

j¼1; j–i

bju
�ðxi; ti; nj; sjÞ þ biuii: ð11Þ

It is noted that only the origin intensity factors uii are unknown
in the above equation. Thus, the origin intensity factor uii can be
calculated via

uii ¼ 1
bj

usðxi; tiÞ �
XNk

j¼1; j–i

bju
�ðxi; ti; nj; sjÞ

" #
; i ¼ 1;2; . . . ;N: ð12Þ

Using the procedure described above, the origin intensity fac-
tors on the Dirichlet boundary conditions of the diffusion problems
have been extracted out, as shown in Eq. (12).
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