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a b s t r a c t

Functionally graded materials are being widely implemented in many fields of technology. In the paper
we present an approach to solving an inverse problem on a simultaneous identification of thermal con-
ductivity coefficient and volumetric heat capacity of functionally graded materials. As an input data we
use measurements of temperature and heat flux at body’s boundary. The inverse problem solving is
reduced to an iterative procedure when each iteration provided solving of the system of Fredholm’s inte-
gral equations of the first kind. As an example, the problem for a rod is considered. The direct problem is
solved by means of the Galerkin method. Examples of simultaneous reconstruction of different inhomo-
geneous laws of thermalphysic characteristics are presented.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, composites with continuous change of physical
properties called functionally graded materials (FGM) have been
increasingly incorporated in different fields of technology. Unlike
layered composites, FGM make it possible to avoid jumps in ther-
malphysical characteristics through an interfacial area [1]. To
describe adequately thermal processes occurring in FGM, it is nec-
essary to refuse a hypothesis of homogeneity. It is worth noting
that a material can also become inhomogeneous during operation,
for instance, with large temperature drops.

In case of inhomogeneous bodies, direct measurements of ther-
malphysical properties (thermal conductivity coefficient and volu-
metric heat capacity) are impossible as they present some
coordinate functions. But if there is a thermal process in a medium,
then on the basis of measurable input data it is possible to recon-
struct a structure of the medium by means of solving coefficient
inverse problem of thermal conductivity (CIPTC). In practice they
often use two types of CIPTC statements. For the first type of state-
ment, we assume that a data on a temperature is known in all the
surface and inner points of the body for some time point [2]. For

the second type, the data on temperature and heat flows is known
just at some boundary part for some time interval [3].

As a rule, CIPTC are ill-posed and nonlinear problems, therefore,
it is vital to build stable computational algorithms of their solving.
The most widespread approach to solving CIPTC is based on its
reduction to a minimization of residual functional. To minimize
it, they often use gradient methods [2,4–12] or genetic algorithms
[13].

In the number of papers the alternative approaches to solving
CIPTC are proposed: quasiinversion method [14], statistical inver-
sion approach [15], iterative process containing solving Fredholm’s
integral equations of the first kind.

When solving CIPTC, you are often limited by a restriction on a
reconstruction: you can reconstruct only the thermal conductivity
coefficient. The papers [2,5,6,8,16–21] are devoted to finding the
thermal conductivity coefficient. However, in practice all of the
thermalphysic characteristics are usually unknown. In the problem
of their simultaneous identification, an important aspect is to state
boundary conditions and additional data properly in order to pro-
vide the uniqueness of the inverse problem solution. In this way, in
[22,23], the authors considered and mathematically grounded
some types of statements of heat-conduction inverse problems
providing uniqueness of the solution in the framework of a single
experiment.

Unlike [22,23], in thepresentpaperwedealwith theprocedureof
simultaneous reconstruction of two thermalphysic characteristics
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of FGM in the frameworks of two experiments. To solve nonlinear
inverse problem on the basis of the approach developed in [3,24–
28], we obtained some operator equations allowing building an iter-
ative process, at every step of which a linear problem had to be
solved. One of the efficientways of linearization is usingweak state-
ments of the direct problem [29–33]. As an example of an applica-
tion of such an approach, we considered the inverse problem for a
rod. The direct problemwas solved by theGalerkinmethod.We con-
ducted a series of computational experiment on the simultaneous
identification of thermalphysic characteristics of the rod.

2. Operator equations for solving inverse coefficient problem of
thermal conductivity

Let us consider the problem of heat distribution in a limited
inhomogeneous body. The initial boundary value problem has form

kijðMÞTðM; tÞ;j
� �

;i ¼ cðMÞ _TðM; tÞ; ð1Þ

TjST ¼ 0;�kijT;injjSq ¼ q; ð2Þ

TðM;0Þ ¼ 0: ð3Þ
Here kij are the components of the thermal conductivity tensor, c is
the volumetric heat capacity, T is the body temperature, nj are the
components of the unit vector of outer normal to Sq; q is the heat
flux density.

The direct problem of thermal conductivity is to find the func-
tion T from (1)–(3) when the thermalphysic characteristics (kij; c)
are known.

In the inverse problem it is required to define the thermalphysic
characteristics (kij; c) by an additional data on the temperature
measured at the body’s boundary part:

TjST ¼ f ðM; tÞ; t 2 T1; T2½ �: ð4Þ
The stated inverse problem (1)–(4) is nonlinear. The weak state-

ment of the direct problem (1)–(3) allows formulating an iterative
process and operator equations at its each step without a compli-
cated procedure of calculation of the Frechet derivatives of nonlin-
ear operators [24].

Let us introduce the test function h satisfying the boundary con-
dition hjST ¼ 0. Then the weak statement of the problem can be
written in the following form [34]:Z
V
½ðkijT;jÞ;i � A _T�hdV ¼ 0; ð5Þ

By applying the Ostrogradski–Gauss theorem to (5) and using
the boundary conditions (2), we haveZ
V
kijT;ih;jdV þ

Z
V
c _ThdV ¼

Z
Sq

qhdS: ð6Þ

The formula (6) can be written as:

ða; T; hÞ ¼ BðhÞ: ð7Þ
Here

Aða; T; hÞ ¼ RV kijT;ih;jdV þ RV c _ThdV is the trilinear form, i.e. the
form which is linear by the coefficients aðkij; c) of the differential
Eq. (1), the temperature T and the test function h;

BðhÞ ¼ RSq qhdS is the linear form for the test function h.

Let usbuild an iterativeprocessbasedon the relation (7). The iter-
ative process starts from the initial approximation of the coefficients
að0Þ. Denote T ð0Þ as the corresponding field satisfying theweak state-
ment ðað0Þ; Tð0Þ; hÞ ¼ BðhÞ. Then the sequence of problems to define
Tðn�1Þ in accordance with [24] takes form ðaðn�1Þ; Tðn�1Þ; hÞ ¼ BðhÞ,

and the correction daðn�1Þ ¼ a� aðn�1Þ is to be found from the opera-
tor equation of the first kind with compact kernel:

ðdaðn�1Þ; Tðn�1Þ; hðn�1ÞÞ ¼ Bðf � f ðn�1ÞÞ: ð8Þ
In expanded form, the Eq. (8) takes formZ
V
dkðn�1Þ

ij ðT;ðn�1Þ
i Þ2dV þ

Z
V
dcðn�1Þ _Tðn�1ÞTðn�1ÞdV

¼
Z
Sq

qðf � Tðn�1ÞÞdS; t 2 T1; T2½ �: ð9Þ

However, just one Eq. (9) is not enough to find corrections for
two unknown functions. It is necessary to get the second equation
proceeding from the thermal conduction problem with other
boundary conditions.

As a specific example of an application of the proposed
approach, let us consider the problem of simultaneous reconstruc-
tion of thermalphysic characteristics of an inhomogeneous rod.

3. Thermal conductivity problem for functionally graded rod

Let us consider a problem on heat distribution in a straight
inhomogeneous isotropic rod of the length l with zero maintained
temperature at one end (x ¼ 0) and constant heat flux q0 at the
other one (x ¼ l). The initial conditions are assumed to be zero:

@

@x
kðxÞ @T

@x

� �
¼ cðxÞ @T

@t
;0 6 x 6 l; t > 0; ð10Þ

Tð0; tÞ ¼ 0;�kðlÞ @T
@x

ðl; tÞ ¼ q0; ð11Þ

Tðx;0Þ ¼ 0: ð12Þ
Let us switch to the dimensionless parameters and functions in

(10)–(12), denoting z ¼ x
l ;
�kðzÞ ¼ kðxÞ

k0
; �cðzÞ ¼ cðxÞ

c0
; s ¼ k0t

c0 l
2 ;Wðz; sÞ ¼

k0T
q0 l

; k0 ¼ max
x2½0;l�

kðxÞ; c0 ¼ max
x2½0;l�

cðxÞ.
After it, the initial boundary value problem (10)–(12) will take

form:

@

@z
�kðzÞ @W

@z

� �
¼ �cðzÞ @W

@s
;0 6 z 6 1; s > 0; ð13Þ

Wð0; sÞ ¼ 0;��kð1Þ @W
@z

jz¼1 ¼ 1; ð14Þ

Wðz;0Þ ¼ 0: ð15Þ
The direct problem of thermal conduction is to find functionWðz; sÞ
from (13)–(15) when thermalphysical characteristics �cðzÞ and �kðzÞ
are known.

In the inverse problem it is required to recover simultaneously
both �cðzÞ and �kðzÞ by the additional data on temperature value at
the rod’s end z ¼ 1 for some time interval:

Wð1; sÞ ¼ f ðsÞ; s 2 ½a; b�: ð16Þ
To solve the inverse problem, we use the operator Eq. (9) which

in case of the rod transfers into the following dimensionless form:Z 1

0
d�kðn�1ÞM1ðz;sÞdzþ

Z 1

0
d�cðn�1ÞM2ðz;sÞdz¼ F1ðsÞ;s2 ½a;b�: ð17Þ

Here, the kernels and the right part of the Eq. (17) have form

M1ðz; sÞ ¼ @W ðn�1Þ

@z

 !2

; M2ðz; sÞ ¼ @W ðn�1Þ

@s
W ðn�1Þ;

F1ðsÞ ¼ f ðsÞ �W ðn�1Þð1; sÞ:
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