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a b s t r a c t

This paper deals with the time differential three-phase-lag heat transfer model aiming, at first, to identify
the restrictions that make it thermodynamically consistent. The model is thus reformulated by means of
the fading memory theory, in which the heat flux vector depends on the history of the thermal displace-
ment gradient: the thermodynamic principles are then applied to obtain suitable restrictions involving
the delay times. Consistently with the thermodynamic restrictions just obtained, a first result about
the continuous dependence of the solutions with respect to the given initial data and to the supply term
is established for the related initial boundary value problems. Subsequently, to provide a more compre-
hensive review of the problem, a further continuous dependence estimate is proved, this time conve-
niently relaxing the hypotheses about the above-said thermodynamic restrictions. This last estimate
allows the solutions to grow exponentially in time and so to have asymptotic instability.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decades, much attention has been devoted to the
theory originally proposed by Tzou [1–3] about the so-called
dual-phase-lag heat conduction model. Such a theory essentially
replaces the classical Fourier law with the following constitutive
equation

qiðx; t þ sqÞ ¼ �kijðxÞT ;jðx; t þ sTÞ; with sq; sT > 0 ð1Þ

stating, synthesizing its meaning, that the temperature gradient T ;j

at a certain time t þ sT results in a heat flux vector qi at a different
time t þ sq. In the above constitutive equation (1), besides the expli-
cit dependence upon the spatial variable, we point out that qi are
the components of the heat flux vector, T represents the tempera-
ture variation from the constant reference temperature T0 > 0 and
kij are the components of the conductivity tensor; moreover, t is
the time variable while sq and sT are the phase lags (or delay times)
of the heat flux and of the temperature gradient, respectively. In
particular, sq is a relaxation time connected to the fast-transient
effects of thermal inertia, while sT is caused by microstructural

interactions, such as phonon scattering or phonon–electron
interactions [4].

We emphasize that the related time differential models
(obtained considering the Taylor series expansions of both sides
of Eq. (1) and retaining terms up to suitable orders in sq and sT)
have been widely investigated with respect to their thermody-
namic consistency as well as to interesting stability issues (see,
for example, [5–7]).

A natural evolution of the dual-phase-lag heat conduction
model by Tzou consisted in the addition, by Roy Choudhuri [8],
of a third delay time sa, which has led to a three-phase-lag heat
conduction theory. He took into account the model by Green and
Naghdi [9–12] which includes, among the constitutive variables,
not only the temperature gradient but also the thermal displace-
ment gradient. Starting from the Green–Naghdi model, Roy Choud-
huri [8] proposed the following constitutive equation for the heat
flux vector

qiðx; t þ sqÞ ¼ �kijðxÞT ;jðx; t þ sTÞ � KijðxÞa;jðx; t þ saÞ; ð2Þ

where a is the thermal displacement variable, being T equal to the
partial time derivative of a;Kij is a thermal tensor characteristic of
the considered theory and sa is a new phase lag related to the ther-
mal displacement gradient a;i: we can suppose, for example, that
0 6 sa < sT < sq. Through this equation, that generalizes Eq. (1),
once again a lagging behavior is described. In agreement with the
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Tzou’s interpretation, Eq. (2) means that a temperature gradient
and a thermal displacement gradient imposed across a volume ele-
ment at times t þ sT and t þ sa, respectively, result in a heat flux
flowing at a different time t þ sq.

Also in this case, exactly as for the constitutive equation by
Tzou, time differential (three-phase-lag) models can be considered,
obtained through the Taylor series expansions of both sides of Eq.
(2) and retaining terms up to suitable orders in sq; sT and sa. At this
regard, in Quintanilla [13] and Quintanilla and Racke [14,15] it is
possible to find some interesting references to the Taylor expan-
sion orders issue.

In the present work and with regard to Eq. (2), the terms up to
the second order in sq and up to the first order in sT and sa are
retained, leading to the following generalized heat conduction
law valid at the position x and at the time instant t:

1
2
s2q€qiðx; tÞ þ sq _qiðx; tÞ þ qiðx; tÞ ¼ �sTkijðxÞ _T ;jðx; tÞ
� kijðxÞ þ saKijðxÞ
� �

T ;jðx; tÞ � KijðxÞa;jðx; tÞ: ð3Þ
The purpose of this paper is twofold: on one side, following [6],

we want to reformulate the constitutive equation (3) in such a way
that the heat flux vector qi depends on the history of the thermal
displacement gradient, in order to evaluate the thermodynamic
consistency of the considered time differential three-phase-lag
model. To this end, we rewrite Eq. (3) in the framework of
Gurtin–Pipkin [16] and Coleman–Gurtin [17] fading memory
theory, and on this basis we analyze the compatibility of the model
with the thermodynamical principles. Subsequently, precisely
under the thermodynamic compatibility hypotheses just found,
we prove the continuous dependence of the solutions from the ini-
tial data and from the external heat supply. A uniqueness theorem
is also readily obtained as a direct consequence of these results.
Finally, to provide a more complete overview about the issue in
question, a further continuous dependence estimate is established
under a suitable assumption which relaxes the previous thermody-
namic compatibility hypotheses. This last estimate allows the solu-
tions to grow exponentially in time and so one can be led to an
unstable system.

2. The basic mathematical model

In this paper, referring to a fixed system of rectangular Cartesian
axes Oxk, (k ¼ 1;2;3), we employ the usual summation and differ-
entiation conventions. For the components of tensors of order
p P 1, the Latin subscripts range over the set f1;2;3g, while a
superposed dot or a subscript preceded by a comma denote
partial differentiation with respect to the time variable t or to the
corresponding Cartesian coordinate xi, respectively; summation is
understood over the repeated subscripts. Moreover, with an overly-
ing bar wewant to denote the closure of the corresponding set indi-
cated below it.We suppose to deal with a regular region B, whose
boundary is denoted by @B, and consider the linear theory of the
time differential three-phase-lag heat conduction model as formu-
lated through the following set of equations: the energy equation

�qi;i þ qr ¼ c€a; in B� ð0;1Þ; ð4Þ
the constitutive equation

qiþsq _qiþ1
2
s2q€qi ¼� kijþsaKij

� �
_bj�sTkij€bj�Kijbj; in B� 0;1½ Þ; ð5Þ

the geometrical equation

bj ¼ a;j; in B� 0;1½ Þ: ð6Þ
For a greater clarity, let us repeat some concepts already shown in
the above Introduction, representing here all the notations used:

qi are the components of the heat flux vector, q is the mass density
of the considered medium, r is the external heat supply per unit
mass, c is the specific heat and a is the thermal displacement, being
T ¼ _a the temperature variation from the constant reference tem-
perature T0 > 0. The components of the thermal displacement gra-
dient vector are denoted by bi and we also recall that kij are the
components of the conductivity tensor and Kij are the components
of a thermal tensor characteristic of the considered theory.

Further, we define the initial boundary value problem P by the
basic equations (4)–(6), the following initial conditions

a x;0ð Þ ¼ 0; _a x;0ð Þ ¼ T0ðxÞ;
qi x;0ð Þ ¼ q0

i ðxÞ; _qi x;0ð Þ ¼ _q0
i ðxÞ; in B;

ð7Þ

recalling that aðx;0Þ ¼ 0 because

aðx; tÞ ¼
Z t

0
Tðx; sÞds;

as well as the following boundary conditions

a x; tð Þ ¼ x x; tð Þ; on R1 � 0;1½ Þ;

qi x; tð Þni ¼ q x; tð Þ; on R2 � 0;1½ Þ;
where R1 [ R2 ¼ @B and R1 \ R2 ¼ ; and having denoted by qini the
heat flux at any regular point of @B. We assume that the initial data
T0ðxÞ; q0

i ðxÞ; _q0
i ðxÞ and the boundary data x x; tð Þ and q x; tð Þ are con-

tinuous prescribed functions selected in such a way to guarantee
the existence of reciprocal compatibility conditions in t ¼ 0 and
on @B.

Let us call S ¼ a; qif g, with aðx; tÞ 2 C1;2 B� ð0;1Þð Þ and
qiðx; tÞ 2 C1;2 B� ð0;1Þð Þ, a solution of the initial boundary value

problem P, corresponding to the given data D ¼ r; T0; q0
i ; _q

0
i ;x; q

n o
.

3. Thermodynamic consistency of the model

Following the example of Fabrizio and Lazzari [6], we want to
rewrite Eq. (5) as a memory constitutive equation of the type
described in Gurtin–Pipkin [16] and Coleman–Gurtin [17]. In order
to do this, let us rewrite it in terms of the thermal displacement
variable a (T ¼ _a):

1
2
s2q€qiðtÞ þ sq _qiðtÞ þ qiðtÞ ¼ �sTkij€a;jðtÞ � kij þ saKij

� �
_a;jðtÞ � Kija;jðtÞ

ð8Þ

and then solve it as a linear non-homogeneous second-order
differential (in time) equation. We immediately see that the
homogeneous (complementary) solution has the form

q0
i ðtÞ ¼ Cc

i exp
�t
sq

� �
cos

t
sq

� �
þ Cs

i exp
�t
sq

� �
sin

t
sq

� �
: ð9Þ

Through the application of the method of variation of constants,
we aim to find a couple of functions Kc

i ðtÞ and Ks
i ðtÞ so that

q�
i ðtÞ ¼ Kc

i ðtÞ exp
�t
sq

� �
cos

t
sq

� �
þ Ks

i ðtÞ exp
�t
sq

� �
sin

t
sq

� �
ð10Þ

is a solution of Eq. (8). After appropriate differentiations and
straightforward calculations, the problem is reduced to the study
of a system in the variables _Kc

i ðtÞ and _Ks
i ðtÞ, providing

_Kc
i ðtÞ¼ 2

sq exp t
sq

� 	
sin t

sq

� 	
sTkij€a;jðtÞþ kijþsaKij

� �
_a;jðtÞþKija;jðtÞ

� �
_Ks
i ðtÞ¼� 2

sq exp t
sq

� 	
cos t

sq

� 	
sTkij€a;jðtÞþ kijþsaKij

� �
_a;jðtÞþKija;jðtÞ

� �
8><>:
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