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a b s t r a c t

Fracture–matrix interactions strongly affect anomalous heat transfer in geological sites. This study inves-
tigates effects of the interactions between fractures and rock matrix by using the method of multiple
interacting continua (MINC). The MINC generates different temperature histories for varied fracture spac-
ings. Two analytical solutions of each porous model and fracture model are used to fit the numerical
results for temperature histories due to cold-water injection. The porous model is good agreement with
the result for small fracture spacing, while a solution of the fracture model fits the result for large fracture
spacing. The MINC yields intermediate behaviors in between a porous medium and a single fracture. A
fractional heat transfer equation (fHTE) has been developed to describe anomalous thermal diffusion
in a fractured reservoir. The fHTE accounts for heat flux from fracture into matrix by using a temporal
fractional derivative. The fHTE can capture numerical results for temperature histories with different
fracture spacings. The fracture spacing has correlations to the fHTE best-fit parameters (i.e., the orders
of fractional derivatives and the retardation parameters). The fHTE with varying time fractional deriva-
tives can cover descriptions of subdiffusion, Fickian diffusion, and superdiffusion.

` 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Natural fracture networks significantly control hydrodynamic
and thermodynamic behaviors in geological fields (e.g. geothermal
energy, deep geologic storage of nuclear waste, induced saltwater
intrusion, hydraulic fracturing, and carbon dioxide sequestration).
Fast flow paths through fractures may lead to rapid migration,
while interactions of flow with the rock matrix (i.e., advective
imbibition, diffusion, or adsorption) affect the retardation of fluid
and heat.

The fracture–matrix interactions are treated with dual-
continuum approaches, which include the classical double-
porosity model [1,42], the dual-permeability concept [9], and the
more rigorous dual-continuum generalization of the method of
multiple interacting continua (MINC) [19,25]. In the double-
porosity concept, a network of interconnected fractures forms

the flow paths, and the embedded rock matrix is the subdomains
exchanging mass and heat between the flow domain and the stag-
nant domains. This concept assumes that approximate thermody-
namic equilibrium locally exists between fracture and matrix,
that is, fracture–matrix exchanges occur instantaneously [8]. In
contrast, the MINC method is able to describe gradients of pres-
sures, temperatures, or concentrations inside the matrix by subdi-
viding individual matrix blocks. Although improved capacities of
computer simulations allow us to use very large amount of grids
and huge computer storage spaces, the main difficulty is to deter-
mine numerous site-specific input parameters. Unfortunately,
most measurement data are obtained from limited samples and
do not accurately describe a fractured medium. Inverse problem
analyses (e.g., iTOUGH2 [13,12] and stochastic approaches
[41,26]) have been improved but tend to be computationally
intensive.

For idealized and simplified systems and conditions, it is possi-
ble to solve mathematical models by analytical techniques, which
would be attractive to characterize reservoir properties during
early phases of developments. Classical modeling for heat transfer
in a single fracture treats heat exchange between a fracture and the
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embedded rock matrix. The purpose of this study is to develop a
heat transfer equation based on the fractional calculus. Recently,
fractional calculus has been applied to modeling methodologies
and have attracted interest in several fields, for instance, fluid
mechanics [20], rheology [4] bioengineering [24], and hydrological
modeling [27,44,2]. Temporal fractional derivatives can be used to
describe diffusion into matrix and/or into surrounding rocks where
fractures show self-organized fractal distributions [15,16,32,33].
The advantage of using fractional calculus is its ability to character-
ize phenomena in heterogeneous media with few parameters. The
drawback is that the physical meaning of the constitutive parame-
ters is still unknown.

Fractional differential equations for heat transfer has been stud-
ied [28,23,10,17]. Little is known about the relationship between
the order of time fractional derivatives and geological structures.
First, we show conventional modeling approaches for heat transfer
and compare with the fractional heat transfer model. Numerical
simulation results are obtained from the MINC method to reveal
insights into the physical meaning of fractional derivatives in heat
transfer.

2. Methodology development

2.1. Conventional mathematical heat transfer models

Bodvarsson [5] derived the basic equation for subsurface tem-
perature fields in a homogeneous porous medium with intergran-
ular flow. The governing equation can be written as:
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where qCp ¼ /wqwCpw þ ð1� /wÞqrCpr . T1 is temperature of the
flow domain, t is time, and x is distance. qw and qr are the density
of water and rock, respectively. Cpw and Cpr are the heat capacities of
water and rock. /w is the porosity, and u is the fluid velocity. This
equation assumes that uncompressed fluid flows in a homogeneous
porous medium. The rock grains are so small that there is a perfect
temperature contact between the fluid and the rock grains. Because
convection is dominant in most geothermal hydrothermal systems
[43], thermal conduction was neglected. This model will be referred
to as the porous model in this paper. The term on the left hand side

describes heat accumulation in the porous medium. The term on
the right hand side represents convection.

Lauwerier [21] developed an analytical solution for heat trans-
fer with heat loss into confining beds according to the Fourier law.
Heat exchange between a single flowing region (fracture) and stag-
nant regions is considered. Bodvarsson and Tsang [6] presented a
differential equation for a single fracture surrounded by confining
rock masses as follows:
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where T1 is the temperature of the fluid in the fracture and Ts is the
temperature of the surrounding rock masses. kr is the thermal con-
ductivity of the rock and b is the fracture aperture. z is the distance
from the fracture, which is perpendicular to the x-axis. The term on
the left hand side accounts for heat accumulation in the fracture.
The first and second terms on the right hand represent convection
in the fracture and heat loss into the confining rocks, respectively.
Thermal equilibrium is assumed to take place instantaneously
between water and rocks, so that anywhere in the fracture rocks
have the same temperature as the surrounding fluid. The heat flux
into the surrounding rocks is given by

Js ¼ �kr
@Ts

@z

����
z¼0

: ð3Þ

This model can express thermal diffusion from a single fracture into
the surrounding rocks following the Fourier law. We call this math-
ematical model the single-fracture model in this paper.

2.2. The time fractional diffusion model

Fractional diffusion equation has been used to describe anoma-
lous diffusion processes, which do not follow the Fick’s law and are
called non-Fickian solute transport [27,44]. Fick’s law of solute dif-
fusion and Fouriers law of heat conduction both are empirical laws.
Fick’s law describes that mass flux is proportional to the concentra-
tion gradients, while Fouriers law describes that heat flux is pro-
portional to temperature gradients, respectively. A fractional
advection–dispersion equation (fADE) can model mass transport

Nomenclature

a arbitrary constant
a0 thermal diffusivity
b fracture aperture
Cp heat capacity
d arbitrary constant
J heat flux
K permeability
k coefficient including physical properties and the struc-

ture of porous rocks
t time
T temperature
u fluid velocity in the fracture
x horizontal coordinate
X non-dimensional distance
z vertical coordinate
b order of temporal fractional derivative
c order of temporal fractional derivative
j coefficient depending on the shape of porous blocks

k thermal conductivity
k0 effective thermal conductivity
U memory function
q density
h index of permeability reduction

Subscript
0 initial
1 reservoir
c constant
f fluid
in injection
m matrix
r rock
s surrounding rock
w water
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