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a b s t r a c t

In order to investigate the structures of the cavitating flow, a volume fraction transport equation with a
hybrid turbulence model has been used to simulate the dynamics of the cavitation phenomenon over a
two-dimensional ClarkY hydrofoil (AoA = 8�, r = 0.8, and Re = 7�105). From the Eulerian viewpoint, the
interactions of pressure, vortex structure, and volume fraction have been evaluated, and the results have
been validated carefully with the experimental observations. Four different flow stages can be catego-
rized accordingly based on the development of the attached cavity, trailing edge cavities, and
re-entrant jet.
Furthermore, the Finite-Time Lyapunov Exponent (FTLE) and the corresponding Lagrangian Coherent

Structures (LCSs) have been used to separate dynamically distinct regions. Above the upper surface,
the liquid flow captured by LCS A could travel along the cavity interface to the trailing edge. Similarly,
the LCS C captures the liquid flow below the lower surface that can be attracted into the upper surface.
From the corresponding particle tracking, these two flows meet near the trailing edge and mix together to
form the re-entrant jet, which can be represented by the LCS B.
The current study shows that the LCS approach together with the Eulerian method can help us to have

better understandings of the cavitating flow. The Lagrangian analysis especially indicates the underlying
flow physics about the mixing process and bubble growth and decline behaviors. Most of the previous
related studies only focus on the flow above the upper surface. The LCSs shown in this study also empha-
size the importance of the flow structure of the lower surface, which provides more insightful informa-
tion for the flow control and is worth further investigation.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This study utilizes the Lagrangian Coherent Structures (LCSs) to
get better understandings of the underlying physics of the turbu-
lent cavitating flows. The introduction includes (i) the fundamen-
tals of the cavitation and numerical modeling, and (ii) the basics
of LCSs and the applications.

1.1. Cavitation

Cavitation occurs when the local liquid pressure is lower than
the vapor pressure, leading to undesirable effects such as the noise,
vibration, erosion, and power loss in components of the fluid
machinery and underwater vehicle. The cavitation number r is
defined as r = (P�Pv)/0.5qlU1

2 where P is the local fluid pressure,
Pv is the vapor pressure, ql is the liquid phase density, and U1 is

the free stream velocity. The cavitation number is the most impor-
tant dimensionless parameter to describe the cavitation intensity
and tendency. As the cavitation occurs, the phase change process
involves continuous evaporation and condensation [1,2]. In order
to maintain the vapor phase inside the cavity, the heat transfer will
be extracted from the liquid phase to overcome the latent heat.
This is the so-called evaporative cooling. However, for most cases,
such as the water under the room temperature, the thermal effect
is insignificant due to the extremely large liquid-to-vapor density
ratio (�O(5) at 298 K), and hence the isothermal assumption is
usually applied to the cool water cavitation [3–5].

From computational aspects, the mixture model treats the
vapor and liquid phase as a single continuous phase [4–6]. Under
this framework, the Rayleigh–Plesset equation has been used
widely to connect the phase change rate from a single individual
bubble to the macroscopic bubble cluster [6–9]. The microscopic
bubble interaction force and slip velocity between liquid and vapor
phase are usually neglected to avoid further empirical modeling,
and both phases share the same set of Navier–Stokes equations
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[6]. The mixture cavitation model is usually based on a transport
equation of either volume fraction or mass fraction, and it assumes
that the phase change takes place due to the difference between
the local and vapor pressure. Accordingly, the evaporation term
of the cavitation model is activated when the local pressure is
lower than the vapor pressure, and vice versa for the condensation
term. The details have already been well documented in Ref. [5,10].
Since the detail dynamics of cavitation is not well understood,
additional empirical coefficients are usually necessary to regulate
the strength of the evaporation and condensation rates. More
details can be referred to Section 2.2.

Since the Reynolds number of the cavitating flow is usually very
high (greater than O(5)), the turbulent modeling is unavoidable.
Although the Large Eddy Simulation has (LES) already been imple-
mented for the turbulent cavitating flows [10–13], the Favre-
Averaged Navier–Stokes equations are still mainstream in the
related fields due to its balance between the computational effort
and accuracy. Within this category, the standard k–e turbulence
model usually tends to give excessive eddy viscosity and dissipates
the possible large vortex motion. The implement of an eddy viscos-
ity limiter can compensate this phenomenon [6]. Based on the res-
olution, the computed turbulence length scale can be compared
with a given filter size. Once the turbulence length scale is larger
than the filter size, the eddy viscosity can be reduced by a linear
filter function [4–6,14,15]. Alternatively, since the sound of speed
could drop several orders of magnitude as the phase change takes
place [16,17], the induced compressibility could bring out the vor-
tex motion that is difficult to be captured by the standard type tur-
bulence model. As a result, the eddy viscosity limiter can be
assigned as a function of the vapor volume fraction [6,7,17,18].
Alternatively, instead of using a limiter function for the eddy vis-
cosity, the Partially Averaged Navier–Stokes (PANS) model directly
imposes a constant ratio of the unresolved-to-total turbulent
kinetic energy to reduce the eddy viscosity [19–20]. Further details
of the turbulence modeling for cavitating flows can be referred to
Section 2.3.

1.2. Lagrangian Coherent Structures

Contrast to the Eulerian viewpoint, such as the vorticity, Q, Q-R,
D, and k2 criterion [19–24], the Lagrangian Coherent Structures
(LCSs) can be regarded as a trajectory-based approach by consider-
ing the fluid flow as a dynamic system of fluid particles. The LCSs
are extracted from the Finite-Time Lyapunov Exponent (FTLE),
which characterizes the separation rate of neighborhood trajecto-
ries during a finite time. Therefore, the LCSs can separate the
dynamically distinct regions of the flow fields [25–34]. This
approach is frame-independent even under a rotational reference
frame. For further detail dentitions of LCSs and FTLE, please refer
to Section 3 and Ref. [25,29].

As for the applications of the LCSs, O’Farrell and Dabiri [26] have
related the newly-growth LCSs to the initiation of the vortex pinch-
off in the jet flow. Wilson et al. [27] have utilized the LCSs to study
the swimming model of a self-propelling jellyfish. In their study,
the Reynolds number of the biological locomotion is typically very
low (O(1)–O(100)). Therefore, the flow visualization by vorticity is
too dissipative and fails to distinguish different flow patterns.
However, different mechanisms can still be identified by using
LCSs. For a large environmental scale, Lekien and Leonard [28] have
analyzed the high-frequency radar data of Monterey Bay by using
the LCSs, and a clearer boundary of the current can be identified for
pollution preventions. Similar study can also be found in Ref. [29].
Tang et al. [30] have further used the LCSs to analyze subtropical
jet stream near Hawaii from the Weather Research and Forecasting
(WRF) model. The LCSs corresponding to the turbulence can be
identified and confirmed by the balloon measured data. Shadden

et al. [31] have even utilized the LCSs to study the flow conditions
in the healthy and ill cardiovascular system respectively.

For studies related to the propulsion and aerodynamics, Tang
et al. [32] have used the LCSs to assess underlying physics of the
gaseous jet injected into water, the particle tracking technique
helps to understand the mechanisms of the gain of the propulsion
during the back attack stage. The LCSs can also be applied to the
foil with complex vortex structures [29,32–36]. Under the steady
state condition, Shadden et al. [29] have shown a LCS starting from
the separation point. Cardwell and Mohseni [33] have further ana-
lyzed the unsteady flow field around the foil. They have focused on
where the particles come from by tracing the particle groups inside
different LCS regions. Under similar framework, Tseng and Hu have
further used LCSs to analyze the dynamic stall of a pitching foil
[36], and their results shows that the reverse flow from the pres-
sure side can interact strongly with the flow above the suction side.
The topologies of the vortex shedding process have been evaluated
in these studies through the particle tracking [32–36]. Conse-
quently, the LCSs can potentially provide more insightful informa-
tion for the flow control and is worth further investigation [33].

In this study, a volume fraction transport equation with a
hybrid turbulence model has been used to simulate the dynamics
of cavitation phenomenon over a two-dimensional ClarkY hydro-
foil (AoA = 8�, r = 0.8, and Re = 7�105) [14,37]. Then the velocity
data from the computational results is used to obtain the FTLE
and LCSs. The goal in this study is to utilize the particle tracking
around the LCSs to analyze the underlying cavitating dynamics

2. Numerical approaches for turbulent cavitating flows

The computational modeling in this study utilizes the Navier–
Stokes equations with Favre-averaged turbulence closure. This sec-
tion will introduce the governing equations.

2.1. Navier–Stokes equations

For the incompressible flow, the Reynolds-Averaged Navier–
Stokes (RANS) model is used widely for the industry and academic
purpose due to its balance between computational effort and accu-
racy [38–40]. However, for the compressible flow or flow field with
substantial density variation, the Favre-Averaged Navier–Stokes
model should be adopted. The mixture density qm and pressure P
come from the Reynolds-ensemble average, and while the velocity
u is density-weighted average [4,39,40]. The continuity and
momentum equations are listed below in Eqs. (1)–(4):
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In Eqs. (1)–(4), x is the coordinate, t is time, l is the fluid viscos-
ity, lt is the turbulent eddy viscosity, k is the turbulent kinetic
energy, sij is the stress, sijR is the Reynolds stress, and the subscript
i and j stand for the Einstein notation. The nonlinear Reynolds
stress sijR is approximated by the Boussinesq’s gradient transport
hypothesis in Eq. (4). The energy equation is not solved in this
study due to the isothermal condition for the cool water cavitation
[3–5].

480 C.-C. Tseng, P.-B. Liu / International Journal of Heat and Mass Transfer 102 (2016) 479–500



Download English Version:

https://daneshyari.com/en/article/7055133

Download Persian Version:

https://daneshyari.com/article/7055133

Daneshyari.com

https://daneshyari.com/en/article/7055133
https://daneshyari.com/article/7055133
https://daneshyari.com

