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a b s t r a c t

In this paper, a two-dimensional simulation of steady mixed convection in a square enclosure with dif-
ferentially heated sidewalls has been performed when the enclosure is filled with a Bingham fluid. The
problem has been solved by the Binghammodel without any regularisations and also by applying the reg-
ularised Papanatasiou model. An innovative approach based on a modification of the Lattice Boltzmann
Method (LBM) has been applied to solve the problem. Yield stress effects on heat and momentum trans-
port using the Papanatasiou model are investigated for certain pertinent parameters of the Reynolds
number (Re = 100, 500, and 1000), the Prandtl number (Pr = 0.1, 1, and 10) and the Bingham number
(Bn = 0, 1, 5 and 10), when the Grashof number is fixed at Gr = 10,000. Results show that a rise in the
Reynolds number augments the heat transfer and changes the extent of the unyielded section.
Furthermore, for fixed Reynolds and Prandtl numbers, an increase in the Bingham number decreases
the heat transfer while enlarging the unyielded section. Although an increase in the Prandtl number
enhances heat transfer, it does not affect the proportions of the unyielded/yielded regions in the cavity.
Finally, the results of the Bingham and Papanatasiou models are compared and it is found that there is a
visible difference between the two models especially in the yielded/unyielded sections.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Convection involving both free and forced convection is gener-
ally referred to as mixed convection, which occurs when buoyancy
effects are superposed on a forced flow. Mixed convection in fluid-
filled square cavities plays an important role in the area of heat and
mass transfer and has been given a considerable attention over the
past several years due to the wide variety of applications in science
and engineering [1–7]. For example, the flow is present in materi-
als processing, flow and heat transfer in solar ponds, dynamics of
lakes, reservoirs and cooling ponds, crystal growing, float glass
production, metal casting, food processing, galvanizing, and metal
coating. However, most of the research has been limited to
incompressible Newtonian fluids, although in a few cases, non-
Newtonian fluids have also been considered. Viscoplastic fluids
form a special sub-class of non-Newtonian fluids in which the flow
field is divided into two regions: the first is an unyielded zone
where the fluid is at rest or undergoes a rigid motion, and the sec-
ond where the fluid flows like a viscous liquid. In the unyielded
zone, the second invariant of the extra stress is less than or equal

to the yield stress and in the yielded region, this invariant exceeds
the yield stress. Thus, the location and shape of the yield surface(s),
i.e. the interface between these two sets, is also a part of the solu-
tion of flow problems of such fluids. This is a challenging problem
and research has been divided into using the Binghammodel with-
out any regularisations, or the modification due to Papanastasiou
[8], or the bi-viscosity model due to O’Donovan and Tanner [9].

Here, we solve the flow of a Bingham fluid in a lid driven
square cavity with differentially heated sidewalls using a new
numerical approach, based on the Lattice Boltzmann Method
(LBM). This technique is applied to the Bingham model and the
Papnasatasiou model so that a comparison between their predic-
tions can be made. As far as the LBM is concerned, it has been
demonstrated to be a very effective mesoscopic numerical method
to model a broad variety of complex fluid flow phenomena. It has
developed into an alternative powerful numerical solver for the
Navier–Stokes (N–S) equations applicable to incompressible
Newtonian fluids. In comparison with traditional methods in the
field, the LBM algorithms are much easier to implement, especially
in complex geometries and multi-component flows. This is because
the main equation of the LBM is hyperbolic and can be solved
locally, explicitly, and efficiently on parallel computers. However,
it has had to overcome three main drawbacks in passing from
the compressible to incompressible models. The first one arises
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from the existence of a pressure density relation, which is incom-
patible with flows of incompressible fluids. Several investigators
attempted to remove this connection and their procedures
introduced other limitations. For example, in the LBM due to
[10], although the pressure is an independent variable, the N–S
equations for incompressible fluids can only be recovered from
the compressible fluid model for very small Mach numbers, and
the viscous dissipation effect in the energy equation has to be
neglected due to the low Mach number. The second issue is the
specific relation between the relaxation time and the viscosity.
The third is concerned with solving rheological problems with
LBM for non-Newtonian fluids, especially in the presence of the
energy equation. Finally, the application of the boundary condi-
tions in LBM is immensely complicated which exhibits the need
for more flexible LBM algorithms for boundary conditions.

In this connection, Fu and So [11] proposed a new equation for
the equilibrium distribution function, modifying the LB model.
Here, this equilibrium distribution function is altered in different
directions and nodes while the relaxation time is fixed. In this
scheme, the problematic pressure density relation has been elimi-
nated, for the density has a fixed value. The constancy of the relax-
ation time and the independency of viscosity from the relaxation
time lead to the creation of an appropriate method for a wide range
of fluids, including non-Newtonian behaviour. However, the Finite
Difference Lattice Boltzmann Method (FDLBM) of Fu and So [11]
was restricted to fluid flows in the absence of the energy equation.
Subsequently, Fu et al. [12] developed a newmethod for the energy
equation and named it the Thermal Finite Difference Discrete Flux
Method (TFDDFM) and applied it to solve natural convection flows
in two and three dimensional cavities. In addition, in both FDLBM
and TFDDFM, boundary conditions can be imposed on the
problems in a manner similar to macroscopic methods that enable
the application of more flexible boundary conditions, such as a slip
condition. In addition, Huilgol and Kefayati [13] have recently
derived the continuum mechanics equations of the momentum
and energy equations from the FDLBM and the TFDDFM,
respectively.

Turning to the study of the flows of viscoplastic fluids, two
numerical methods have been found to be useful when the Bing-
hammodel is considered. The first is the minimisation of a suitably
chosen augmented Lagrangian functional; the second is based on
solving a variational inequality; for a summary, see Huilgol [14].
Turning to lid driven cavity flows, Sanchez [15] applied a first-
order operator splitting method to solve the corresponding varia-
tional inequality for the flow of a Bingham fluid. Subsequently,
Dean and Glowinski [16] discussed a numerical simulation of
unsteady flows of a Bingham fluid based on time discretisation
and illustrated it by applying it to the flow in a lid-driven cavity.
Recently, Huilgol and Kefayati [17] employed the operator splitting
method to simulate the natural convection in a cavity filled with a
Bingham fluid. The numerical method used by them depends on
the use of the constitutive equation for the Bingham fluid through
the viscoplasticity constraint tensor. This is described fully in Sec-
tion 2 below.

In addition, in Section 2, the regularised Papanastasiou model is
also described for its use subsequently. In the Papanastasiou
regularisation model, the fluid is described through a constitutive
equation which applies throughout the fluid with a parameter
(m) dependent non-Newtonian viscosity. In this model, increasing
the parameter causes the fluid to behave more like a Bingham
fluid; for instance, Dimakopoulos et al. [18] showed that m may
be as high as 106. However, most of the simulations use m ¼ 400
or 1000, which is also the case here. In connection with the lid
driven flow in a cavity, research has been published by Mitsoulis
and Zisis [19] and Neofytou [20] which exhibit the streamlines

and velocities in the middle of the cavity. More recently, Syrakos
[21] has investigated the capabilities and limitations of the popular
finite volume/SIMPLE method coupled with the Papanastasiou reg-
ularisation for the simulation of the flow in a lid driven cavity.
Using the bi-viscosity model, Turan et al. [22] have studied the
natural convection problem. However, the flow of a Bingham fluid
in a lid driven square cavity with differentially heated sidewalls
has not been examined thus far, although, as mentioned earlier,
it is of importance in several processes. Results of a simulation
are presented here through a new numerical method which is
described in full in later sections.

Thus, the main aim of this study is to simulate the mixed con-
vection flow of a Bingham fluid in a differentially heated lid-
driven cavity, using the Bingham and Papanastasiou models,
employing TFDDFM. The relevant equations are listed in Section 3,
and the numerical method is described in Section 4. In Section 5,
the present results are validated with previous numerical investi-
gations and, in Section 6, the effects of the main parameters, viz.,
the Reynolds number, the Prandtl number and the Bingham num-
ber on the flow and thermal fields are exhibited, along with the
location and shapes of various yield surfaces. Comparison with
the results obtained by using the Bingham model is also provided.

2. Bingham and Papanastasiou models

The constitutive equation for an incompressible Bingham fluid
is based on the assumption that the fluid remains at rest or moves
as a rigid body if the second invariant of the extra stress tensor s is
less than or equal to the yield stress sy. If the second invariant
exceeds the yield stress, the material flows like a fluid. This second
invariant is defined through

IIðsÞ ¼ ð1=
ffiffiffi
2

p
Þ ffiffiffiffiffiffiffiffiffiffi

s : s
p

: ð2:1Þ
Hence, using the first Rivlin–Ericksen tensor A1 (Rivlin and

Ericksen [25]), the rigidity condition is given by

A1 ¼ 0; IIðsÞ 6 sy: ð2:2Þ
When the magnitude of the extra stress tensor exceeds the yield

stress, one defines s as a function of the tensor A1 leading to the
following relation:

s ¼ gA1 þ sy
IIðA1ÞA1; IIðsÞ > sy: ð2:3Þ

It is well known that the absence of a constitutive relation
which applies throughout the flow has led to approximate models
such as the Papanastasiou and the bi-viscosity models. In the
Papanastasiou model (Papanastasiou [8]), which is of interest here,
the constitutive equation for the incompressible Bingham fluid is
replaced by that of a material with a non-Newtonian viscosity.
That is,

s ¼ gðIIðA1ÞÞA1; ð2:4Þ
where the viscosity g is the sum of the constant Newtonian viscos-
ity g0, and a parameter dependent term. To be specific,

gðIIðA1ÞÞ ¼ g0 þ
sy

IIðA1Þ 1� expð�mIIðA1ÞÞ½ �; ð2:5Þ

wherem > 0 is the parameter which has to be chosen. Note that the
viscosity function in Eq. (2.5) is a smooth function of its argument.
As far as numerical modelling is concerned, one can employ
Eq. (2.5) and choose an appropriate value for the parameter m. A
search through the literature shows that m can be as large as 106.
Here, we examine the consequences of varying m from 100 to
1000; see Section 6 below.
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