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a b s t r a c t

In this work, we explore the peristaltic flow of Powell–Eyring fluid through curved passage with
complaint walls. Heat and mass transfer analyses in the presence of viscous dissipation and
thermophoresis effects are performed. Adequate assumptions of long wavelength and low Reynolds
number are accounted for problem formulation. The arising system of partial differential equations is
solved by using regular perturbation method. Our results show that the material parameters of the
Powell–Eyring fluid strongly affect the flow fields. We observe that symmetry in the profiles is not
preserved in the curved channel. The size and shape of the trapped bolus is different in the upper and
lower halves of the curved channel. A comparative study of curved and planar channels is also presented.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The process of area contraction and expansion along the length
of a distensible tube/channel is known as peristalsis. This type of
phenomenon appears in many physiological processes such as
urine flow from kidney to bladder, the flow of food bolus through
gastrointestinal tract, transport of chyme through small intestine
etc. Peristaltic mechanism occurs in designing some biomedical
instruments including heart lung machine and blood pumps. In
industry, this phenomenon appears in the transport of toxic fluid.
On the other hand, many industrial and biological fluids such as
polymers, liquid detergents, slurries, shampoos, toothpastes, fruit
juices, gypsum pastes, printer inks, blood, multi-grade oils etc.
are characterized by the non-linear relationship between stress
and deformation rate and are termed as non-Newtonian. Peristaltic
transport of non-Newtonian fluids has been given significant
attention by the research community. For instance, Abd elmaboud
and Mekheimer [1] investigated the peristalsis of second order
fluid occupying a porous space. They adopted perturbation
approach to construct series solutions of the arising non-linear
problem. MHD peristaltic transport of couple-stress fluid was

examined by Tripathi and Beg [2]. Their study was motivated
towards the blood flow in microcirculatory system with particle
size effect. Numerical solutions for peristaltic motion of Carreau–
Yasuda fluid in a curved channel have been provided by Hayat
et al. [3]. Kothandapani et al. [4] analytically discussed the peri-
staltic motion of Carreau fluid through tapered asymmetric chan-
nel. Kothandapani and Prakash [5] examined the peristaltic flow
of Williamson nanofluid considering the novel Brownian motion
and thermophoresis effects. MHD Peristaltic flow of fourth grade
fluid in a rotating channel was addressed by Abd-Alla et al. [6].
They found that magnetic field and rotational effects tend to
oppose the fluid motion. Mustafa et al. [7] analyzed the peristaltic
motion of fourth-grade fluid through a vertical channel using
Keller-box method. Further recent studies in this direction can be
found in Refs. [8–13].

The commonly discussed power-law fluid model has tendency
to describe shear-thinning as well as shear-thickening effects.
The former is a common characteristic of many non-Newtonian
fluids which include blood, polymers and composite materials.
The Powell–Eyring fluid model [14] is more advantageous than
the power-law fluid model in the sense that its constitutive equa-
tions have been derived from the kinetic theory of gases rather
than the empirical relationships. Further it can accurately reduce
to the Newtonian flow behavior for low and high shear rates.
Peristalsis through Powell–Eyring fluid model has been discussed
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by some recent researchers. For example, Akbar and Nadeem [15]
discussed the effects of heat and mass transfer on the peristaltic
flow of Eyring–Powell fluid. Hayat et al. [16] investigated the slip
effects on the peristaltic flow of Eyring–Powell fluid. Abbasi et al.
[17] discussed the peristaltic flow of Eyring–Powell fluid in a
curved channel. Hayat et al. [18] analyzed the effects of convective
conditions and chemical reaction on peristaltic flow of Eyring–
Powell fluid with wall properties. Very recently, analytic solutions
for MHD peristaltic motion of Powell–Eyring fluid through a planar
channel with wall properties and viscous dissipation were pro-
vided by Hina et al. [19].

The study of peristalsis with the consideration of wall properties
has special significance in processes such as blood flow in arteries
and veins, urine flow in the urethras and air flow in the lungs. In
the past, peristaltic flows under the influence of wall properties
have been discussed by various researchers. For example, Radhakr-
ishnamacharya and Srinivasulu [20] investigated the heat transfer
effects in peristaltic flow of Newtonian fluid with wall properties.
Muthu et al. [21] analyzed the peristaltic motion of micropolar fluid
in circular cylindrical tubes having complaint walls. Later, Hayat
et al. [22,23] investigated the influence of wall properties on the
MHD peristaltic flows of Jeffery fluid and Johnson–Segalman fluid
respectively. Series solutions valid for small non-Newtonian fluid
parameters were presented. Srinivas and Kothandapani [24]
described the characteristics of heat andmass transfer inMHDperi-
staltic flow through a porous channel with wall properties. Peristal-
tic flow of Prandtl fluid in rectangular duct characterized by
complaint walls was addressed by Riaz et al. [25]. Peristaltic motion
of Burgers’ fluid with wall properties was explored by Javed et al.
[26]. Combined influence of Hall current and complaint walls on
peristalsis were examined by Gad et al. [27]. Hina et al. [28] pre-
sented an analytical study for peristaltic flow of shear-thinning
fluid in curved channel subject to wall properties.

To our knowledge, peristalsis of Powell–Eyring fluid through
curved channel with complaint walls has not been explored previ-
ously. Thus present work is undertaken to fill this void in the pres-
ence of heat and mass transfer effects. The effects of viscous
dissipation and thermophoresis are considered in the transport
equations. Series expressions of stream function, temperature
and concentration are developed. Graphical results are obtained
to explain the effects of parameters entering in the problem.

2. Mathematical formulation

Consider the peristaltic motion of Powell–Eyring fluid in a
curved channel in the presence of heat and mass transfer. The
channel of width 2d1 is coiled in a circle of center C and radius
R�. Flow in caused due to the sinusoidal waves traveling across
the channel walls. These waves possess neuromuscular properties
of any tubular smooth muscle. u and v denote the axial and radial
components of velocity. The wave shapes are expressed as

r ¼ �gðx; tÞ ¼ � d1 þ a sin
2p
k

ðx� ctÞ
� �

; ð1Þ

in which c is the wave speed, k is the wavelength and a is the wave
amplitude.

The stress tensor for Powell–Eyring fluid is given by
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Here l is the dynamic viscosity, b and c1 are the material fluid

parameters. We consider the expansion of sinh�1 up to second
order as

sinh�1 1
c1

_c
� �

ffi _c
c1

� _c3

6c31
;

_c5

c51
<< 1: ð4Þ

The flow problem is governed by the following equations:
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The boundary conditions for the present problem are

u ¼ 0; T ¼ T1
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� �
at r ¼ �g; ð11Þ

R� �s @3

@x3
þm

@3

@x@t2
þd

@2

@t@x

" #
g¼ 1

ðrþR�Þ
@

@r
ðrþR�Þ2srx
n o

þR� @sxx
@x

�qðrþR�Þ� @u
@t

þv @u
@r

þ R�u
rþR�

@u
@x

þ uv
rþR�

� �
at r¼�g; ð12Þ

where p is the pressure, q the density, Cp the specific heat, j the
thermal conductivity, D the diffusion coefficient of the diffusing
species, Tm the mean fluid temperature, KT the thermal diffusion
ratio, T and C denote the fluid temperature and concentration, s
the elastic tension, m the mass per unit area, d the coefficient of
viscous damping, sxr; srr and sxx are the components of the
stress tensor. We now introduce the following non-dimensional
variables:
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