
Thermoelastic damping in micro- and nanomechanical beam resonators
considering size effects

Hengliang Zhang, Taehwan Kim, Geehong Choi, Hyung Hee Cho ⇑
Department of Mechanical Engineering, Yonsei University, Seoul 120749, Republic of Korea

a r t i c l e i n f o

Article history:
Received 26 February 2016
Received in revised form 28 May 2016
Accepted 13 July 2016
Available online 11 August 2016

Keywords:
Thermoelastic damping
Resonators
Size effects

a b s t r a c t

In this paper, we describe governing equations for modified coupled thermoelasticity in micro- and
nanomechanical beam resonators, which can treat the effects of size by taking the relaxation time, the
phonon mean-free path and the material length scale parameter into account. An analytical model of
thermoelastic damping is derived using the complex-frequency approach. Numerical results of
thermoelastic damping calculated using the proposed model are presented and compared to those
calculated using the models proposed by Zener and Lifshitz and Roukes for a silicon thin beam. The
results show that the nonlocal effect characterized by the length scale parameter is negligible even at
sizes down to the phonon mean-free path. The size effects characterized by the relaxation time and
the phonon mean-free path are significant for a micron-scale beam. Device miniaturization beyond the
submicron scale will lead to increased energy dissipation due to thermoelastic damping considering size
effects. The influence of size effects on thermoelastic damping can be suppressed by increasing aspect
ratios. Finally, we present the range of geometry of a silicon beam resonator where the effects of size
can be neglected by taking 10% as the permitted error bound.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Micro- and nanomechanical resonators are widely used as sen-
sors, microwave transceivers and modulators depending on their
resonant modes [1–3]. In most applications, it is important to have
design control over loss of energy for designing high-performance
components. Among different energy dissipation mechanisms in
these resonators, thermoelastic damping has been identified as a
significant loss mechanism at room temperature in vacuum
through both experimental and theoretical studies [4–8], in which
energy is dissipated due to irreversible heat conduction. Accurate
analysis of thermoelastic damping is crucial for designing
low-loss micro- and nanomechanical resonators.

The amount of thermoelastic damping is usually expressed in
terms of the inverse of the quality factor Q. In 1937, Zener provided
a theoretical foundation for thermoelastic damping and developed
a simple expression to calculate Quality factor for a vibrating beam
in its flexural mode [9,10]. Zener’s classical formula is:
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where E is Young’s modulus, a is the linear coefficient of thermal
expansion, T0 is the equilibrium temperature, q is the density, Ce
is the specific heat, xn (n = 1, 2,. . .) denotes the undamped natural
frequency of the nth mode of flexural vibration, s is a time constant,
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qCe
is the Zener modulus, Ead is the adiabatic value of

Young’s modulus, E is the isothermal value of Young’s modulus,
and X =xns is the normalized frequency.

Lifshitz and Roukes improved upon Zener’s formula by develop-
ing an exact expression for thermoelastic damping in a thin rectan-
gular beam [11]. The formula of Lifshitz and Roukes is given by:
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, k is the thermal conductivity and h is the

thickness.
The analytical models of Zener and Lifshitz and Roukes are now

widely used to estimate thermoelastic damping in a beam.
Size compatibility with monolithic integrated electronic circuits

requires orders-of-magnitude reduction in the dimensions of res-
onators and minimization of the damping [12,13]. The present
dimensions of micro- and nanomechanical resonators can range
from 1 lm to 1000 lm in length, typically, and from a few lm
down to 25 nm or even sub-nm regimes in thickness or diameter

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.044
0017-9310/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: hhcho@yonsei.ac.kr (H.H. Cho).

International Journal of Heat and Mass Transfer 103 (2016) 783–790

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.07.044&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.044
mailto:hhcho@yonsei.ac.kr
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.044
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


[14], which overlap with the phonon mean free path and the
material length scale parameter. The small dimensions of these
resonators pose a serious challenge as size effects on material
properties and behavior at the scale of microns have been shown
experimentally in recent years. The analytical models of Zener
and Lifshitz and Roukes were obtained based on classical linear
thermoelastic theory and size effects were neglected. Thus, the
questions arise: what is the valid range of geometry of micro-
and nanomechanical resonators for these two models, and how
to evaluate the thermoelastic damping if these two models are
invalid.

Size effects will affect thermal transport and strain energy in
nanostructures. When the thickness of the beam is typically of
the order of microns or nanometers, the size effects are often
observed experimentally not only in the area of thermal transport,
but at the area of elasticity theory. Thermal transport in silicon
crystals is mediated by phonons. If the characteristic length scale
of a silicon beam is much larger than the phonon mean-free path,
the classical heat diffusion equation can describe accurately the
transport of thermal energy at a large time scale. However, in
nanostructures, the Fourier equation is not a rigorous description
for the temperature gradient and the heat current becomes nonlo-
cal because the length and time scales of interest overlap with the
mean-free path and the relaxation time of phonons [15,16]. Also,
classical Bernoulli–Euler beam model cannot capture the size
effect and the classical couple stress elasticity theory should be
modified by introducing an internal material length scale parame-
ter [17]. That is, size effects on thermoelastic damping at the scale
of microns should be analyzed from the modified coupled ther-
moelastic equations. To do that, non-Fourier thermal conduction
should be involved in the heat transfer equation to consider the
finite velocity of heat transfer. Moreover, nonlocal effects charac-
terized by the phonon mean-free path and the material length
scale parameter should be considered in the heat transfer equation
and in the equation of motion.

In this paper, the modified coupled thermoelastic equations in a
thin beam considering size effects are described. The analytical
model of thermoelastic damping is derived using the complex-
frequency approach based on the governing equations obtained.
The influence of size effects on thermoelastic damping is studied.
The difference between the results of thermoelastic damping cal-
culated using the proposed model with those calculated using
the analytical models of Zener and Lifshitz and Roukes is investi-
gated. The range of geometry of micro- and nanomechanical silicon
resonators where the effects of size can be neglected is discussed.

2. Governing equations of modified coupled thermoelasticity in
a thin beam considering size effects

In this section, we describe the coupled thermoelastic equations
in a thin beam considering size effects. Some simplifications and
assumptions are used and listed here.

(1) The Euler–Bernoulli beam theory is used to deduce the gov-
erning equations; thus, only thin beams undergoing small
flexural deformations are considered. Large amplitude
deformations where the Euler–Bernoulli theory is known
to fail are not discussed in this paper.

(2) All of the material properties are constants and a small
temperature increment is considered.

(3) Thermal gradients in the plane of the cross section along the
thickness direction are much larger than gradients along the
beam axis, and no gradients exist in the width direction.
Also, there is no heat flow across the boundaries of the
beam.

A thin cantilever beam of length L, thickness b, and width c is
considered. A Cartesian coordinate system is attached to the beam
so that the x-coordinate is parallel to the axis of the beam. The
y- and z-axes are parallel to the thickness and width directions,
respectively. The beam undergoes bending vibrations of small
amplitude about the x-axis. The initial condition is that the beam
is unstressed, unstrained and at temperature T0 over its entirety.

Now we deduce the governing equations considering the size
effects. Non-Fourier thermal conduction and nonlocal effects char-
acterized by the phonon mean-free path are involved in the heat
transfer equation. The material length scale parameter is involved
in the equation of motion. Thus, the governing equations in [11]
are extended to the scale of microns by introducing the relaxation
time, the phonon mean-free path and the material length scale
parameter.

The energy equations for an elastic object subject to small
deformations can be expressed as:

q _e ¼ qT _sþ rij _eij ð3Þ
and

qT _s ¼ qr � divðqiÞ; ð4Þ
where T is temperature, rij is stress component, eij is strain compo-
nent, e is the internal energy density, s is the entropy density, qi is
the heat flux vector and r is the internal heat source density.

We can obtain the following equations by introducing the
Helmholtz free-energy function /ðeij; TÞ defined as /ðeij; TÞ ¼
eðeij; TÞ � Tsðeij; TÞ:
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Assuming that the specific heat Ce ¼ �T @2/
@T2

, we have

divðqiÞ ¼ qr � qCe
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The linear constitutive equation is given by:

rij ¼ kedij þ 2Geij � Eah
1� 2l

dij; ð7Þ

where dij is the Dirac function, k and G are the Lamé coefficients, l is
the Poisson’s ratio, and h ¼ T � T0 is the temperature increment.

Form the Euler–Bernoulli beam theory, the axial stress and the
axial stain in the thin beam meet:

exx ¼ �y
@2wðx; tÞ

@x2
and rxx ¼ �Ey

@2wðx; tÞ
@x2

� Eah; ð8Þ

where w(x,t) describes the deflection of the one-dimensional beam
in the y direction at some position x.

Phonon hydrodynamics is an effective macroscopic method to
investigate heat transport in nanostructures considering memory
and nonlocal effects. Based on this method, the usual relation
between the heat flux vector qi and the temperature gradient
considering nonlocal effects can be expressed as the form of
Guyer–Krumhansl equation [18,19]:

qi þ s0 _qi ¼ �krT þ l22½r2qi þ 2rðr � qiÞ�: ð9Þ
Eq. (9) generalizes the classical Fourier equation by adding to it

relaxational effect, characterized by the relaxation time s0, and
nonlocal effect, characterized by the phonon mean-free path l2
(about 20–100 nm).

Substituting Eqs. (7) and (9) into Eq. (6) and replacing the oper-

ator r2 with @2

@y2 [11], one can reach the heat transfer equation in
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