
Lattice Boltzmann modelling of electro-thermo-convection in a planar
layer of dielectric liquid subjected to unipolar injection and thermal
gradient

Kang Luo a,1, Jian Wu b,1, Hong-Liang Yi a,⇑, He-Ping Tan a

a School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
bGeoRessources Laboratory, Université de Lorraine (ENSG), CNRS, CREGU, F-54501 Vandoeuvre-les-Nancy, France

a r t i c l e i n f o

Article history:
Received 4 June 2016
Accepted 30 July 2016

Keywords:
Electrohydrodynamic flows
Lattice Boltzmann method
Electro-thermo-convection
Unipolar injection
Multi-scale analysis

a b s t r a c t

In this paper, the electro-thermo-convective phenomena induced by the simultaneous action of a unipo-
lar injection of ions and a thermal gradient in a dielectric liquid lying between two parallel plates are
studied. We develop a lattice Boltzmann model (LBM) to solve the whole set of coupled governing equa-
tions, including the Navier–Stokes equations, the conservation equation of charge density, the Poisson’s
equation for electric potential and the energy equation. In this method, four different particle distribution
functions are used to calculate the flow field, electric potential, charge density distribution and temper-
ature field, respectively. A multi-scale analysis is also performed to recover the macroscopic equations
from the discrete lattice Boltzmann equations (LBEs). The present method is validated with several care-
fully chosen test cases, and all LBM results are found to be highly consistent with available analytical
solutions or other numerical works. Besides, the typical subcritical bifurcations and the hysteresis loops
in electro-thermo-convective are clearly presented and analyzed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Electro-thermo-hydrodynamics (ETHD) is an interdisciplinary
field dealing with the interactions between the free charges, elec-
tric field, flow motion and the thermal field [1]. The complex phy-
sics involved in electro-thermo-convective phenomena together
with the promising applications in the active enhancement of heat
transfer with electric field draw a wide attention to this field [2,3].
The complex physics essentially originates from the various cou-
pling possibilities between different fields. For example, the flow
field may be driven by the electric and thermal body forces, which
in return contribute to the transport of free charges and heat. In
addition, the thermal field may also affect the dynamic system
through the temperature-dependent physical properties. In regard
to heat transfer application, there are some attractive advantages
for the techniques based on electric field, such as simple design,
no moving mechanical parts, rapid response, smart control, low
energy consumption and so on [4].

The complex mathematical model as well as the strong nonlin-
ear couplings within ETHD problems has encouraged the applica-

tion of direct numerical simulation approach to gain fundamental
insights into many poorly understood electro-thermo-convective
phenomena. Not surprisingly, most of previous numerical results
with this topic are obtained with the conventional partial differen-
tial equation (PDE) based methods, such as the finite difference
method (FDM) [5], the finite element method (FEM) [6], and the
finite volume method (FVM) [7,8]. On the other hand, during the
last two decades the lattice Boltzmann method (LBM) has experi-
enced rapid development and has become a promising method
for simulations of both simple and complex flows [9,10]. Only until
recent years, LBM has been introduced into the electrohydrody-
namic (EHD) field [11,12]. This is in contrast with the fact that
LBM has long been applied in magnetohydrodynamics (MHD) since
the early 1990s [13]. As a matter of fact, EHD and MHD can be
viewed as two limiting cases of classical electrodynamics coupled
to fluid mechanics [1].

Recently several lattice Boltzmann models have been proposed
to analyze electrokinetic or electrohydrodynamic flows [14–18]. In
most of these LBMs, a simplified model, i.e., the Poisson–Boltz-
mann (PB) model is adopted under the assumption of the thermo-
dynamic equilibrium and ignores an ionic convection term [14,15].
This model leads to the partial decoupling of the electric field from
the fluid flow, which greatly simplifies the solution procedure than
with the fully coupled dynamic model. Later, Capuani et al. [12],

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.108
0017-9310/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: yihongliang@hit.edu.cn (H.-L. Yi).

1 These two authors contributed equally to this work.

International Journal of Heat and Mass Transfer 103 (2016) 832–846

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.07.108&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.108
mailto:yihongliang@hit.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.108
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Wang et al. [16] and Yoshida et al. [17] proposed different hybrid
or unified lattice Boltzmann models that simultaneously solve
the Poisson’s equation, the Nernst-Plank equations for concentra-
tion of different ion types, and the Navier–Stokes equations. The
hybrid model here means that the mass and momentum conserva-
tion equations are solved by the LBM, while the electrostatics
equations solved by the PDE based methods. By contrast, the
LBM is applied to all governing equations with the unified model.
Note that these models were originally designed for the electroki-
netic flows in micro-/nano-scales, such as the electro-osmotic flow
(EOF) in the micro-channel.

Quite recently, we proposed a unified lattice Boltzmann model
for macro-scale electroconvective phenomena in isothermal
dielectric liquids [18]. For the model problem of electro-
convection induced by unipolar injection, our LBM accurately
reproduced the subcritical bifurcation of the linear instability and
finite amplitude bifurcation behaviours. The present study can be
viewed as an extension of [18] to non-isothermal flows. We notice
that the LBM has not been well established for ETHD problems. The
main objective of this study is to present a unified and efficient
LBM framework to solve the dynamic model for electro-thermo-
hydrodynamic flows. As a starting point, we specially consider a
planar layer of dielectric liquid lying between two parallel plate
electrodes and subjected to a unipolar injection of ions and a ther-
mal gradient. This is a standard model problem in ETHD, and it also
serves as a good starting point for more sophisticated models. This
problem has been extensively studied by means of the stability
analysis approach [19], and the complete linear stability diagrams
for different heating and injection configurations, various injection
strengths, with and without residual conductivity have been
obtained. In addition, several conventional PDE based methods
have been developed for the same or similar mathematical model;
see the review paper [20]. In [7] Traoré et al. numerically investi-
gated the subcritical bifurcation behaviours of the configuration
that both injection and heating are from the bottom electrode with
a FVM solver. Their numerically obtained stability criteria show a
good agreement with the values predicted by the stability analysis,
which demonstrates the effectiveness and accuracy of their
numerical method. Later their numerical method has been
extended to consider other injection-heating configurations and
temperature-dependent physical properties [8], and the more
complex shapes and arrangements of electrodes [21]. The same
FVM solver will be used in this study for some validation
computations.

The remainder of this paper is organized as follows. In the next
section, we describe the physical problem and the macroscopic
governing equations and boundary conditions. In Section 3, we
present the LBEs for the fluid velocity, electric potential, charge
density and the temperature. The boundary condition treatment
and the solution procedure are also explained in details in this sec-
tion. In Section 4, the proposed LBM is validated, and numerical
results are presented and discussed. The conclusions are drawn
in the last section.

2. Physical models and macroscopic governing equations

As shown in Fig. 1, we consider a two-dimensional (2D) dielec-
tric liquid layer of depth H lying between two parallel and horizon-
tally placed electrodes of length L. The two electrodes are
maintained at fixed but different electric potentials and tempera-
tures. The liquid is considered to be incompressible, Newtonian
and perfectly insulating. We assume that the electro-chemical
reaction at the liquid/electrode interface, which leads to the injec-
tion of ions, is the sole source for free charges in the bulk liquid. A
detailed description of the injection process in either polar or non-

polar liquids can be found in [1]. In order to simplify the discus-
sion, the injection is further assumed to take place only at the
bottom electrode (i.e., unipolar injection), and the injected charge
density takes a constant value q0 (i.e., homogenous and autono-
mous injection). Therefore, only one species of ions is involved in
the system.

The set of equations governing the dynamic behaviour of the
liquid subjected to the simultaneous actions of external electric
and thermal fields at least include the electrical, mechanical and
energy equations. For the physical problem under consideration
in this study, under the Boussinesq approximation, the governing
equations include the mass conservation equation of fluid (1),
the Navier–Stokes equation (2), the Gauss’s law (3), the definition
equation of electric field (4), the charge conservation equation (5),
and the energy equation (6), which may be expressed as [1],
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where u = [u, v] is the fluid velocity, E = [Ex, Ey] the electric field and
fb the body force density. The scalars q0, p, /, q and h denote the
fluid density, hydrodynamic pressure, electric potential, charge
density and temperature, respectively. The symbols l, e, K, D, v,
in turn, stand for the dynamic viscosity, electrical permittivity, ionic
mobility, charge-diffusion coefficient and thermal diffusivity. In the
above mathematical model, the magnetic effects and Joule heating
have been ignored, since the electric current in insulating liquids
are generally very weak. A quantitative justification for this simpli-
fication can be found in [22]. As shown in Eq. (5), there are three
transport mechanisms for the charge density: (i) drift under the
action of electric field, (ii) convection by the fluid velocity and (iii)
charge diffusion. For the electro-convective and electro-thermo-
convective flows considered here, the charge-diffusion coefficient
takes a small value, which means the charge conservation equation
is strongly convection-dominating with a modified convection
velocity (KEþ u).

Fig. 1. Sketch of the physical domain: the dielectric liquid layer subjected to the
buoyancy and Coulomb forces.
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