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a b s t r a c t

This study explores the use of shape functions on the boundary condition optimization of a forced con-
vection channel flow subjected to an axial heat flux distribution. The goal is to determine the heat flux
distribution that minimizes the coolant overheating and simultaneously reduces the computational opti-
mization efforts. The calculations are implemented in a 2-D homemade code, which solved the conserva-
tion equations of mass, momentum and energy, while coupling the optimization variables, here
represented by the multiple coefficients of the shape functions, with a genetic algorithm. Generally
speaking, two types of shape functions were used: unbiased and biased. In the former, the optimization
procedure is responsible for obtaining the optimal coefficients for Legendre shape functions, while in the
latter, scaling-based power laws are used to construct shape functions. The results computed for both
biased and unbiased shape functions show that not only higher performance levels (i.e., less overheating)
can be obtained with the present formulation when compared with the techniques employed so far in the
available literature (e.g., constant discrete heat flux heaters along the channel), but it also significantly
reduced computation efforts. More specifically, the biased shape functions outperform the unbiased for-
mulation by lowering the maximum plate temperature as much as 20% with respect to the standard con-
stant heat flux case, while simultaneously reducing the computational time by a factor of over 4.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The performance optimization of engineering systems with
respect to their transport phenomena behavior has been consid-
ered extensively while addressing different exchange mechanisms,
optimization methods and objective functions. More specifically,
with respect to heat transfer mechanisms, forced convection-
based problems are often explored due to the existing tradeoffs
commonly observed when accounting for heat transfer rate and
pumping power [1,2]. As for the optimization methods, gradient-
based and bio-inspired (e.g., genetic algorithm) techniques have
been successfully applied to a variety of thermal-fluids related
problems [3–5]. Furthermore, regardless of the physical principle
ruling the heat transfer process or the optimization methodology
employed, the selection of the proper figure of merit is crucial, as
the attempt to optimize an ill-posed figure of merit leads to a
sensitivity analysis [6].

With the goal of improving heat transfer performance, progress
has been achieved towards, for example, the conception of novel
working fluids (e.g., nanofluids, supercritical carbon dioxide and
refrigerants) and geometry optimization [7–12]. With respect to
the latter, researchers have found that topology optimization can
be accomplished, for instance, by the implementation of shape
functions, often polynomials, which are expected to mimic the
behavior of global optima [7,13–15]. On the other hand, boundary
conditions, particularly those of Neumann-type, can be optimized
using discrete constant functions to search for optimal heat trans-
fer distributions and heater spacing [4,16].

Generally speaking, a common observation is that the number
of independent variables (i.e., degrees of freedom) being simulta-
neously optimized is, to a certain extent, proportional to the qual-
ity (i.e., how high or low) of the absolute value obtained for the
figure of merit under consideration [1,2,13]. Therefore, during the
optimization of complex systems, there is an urge to increase the
number of degrees of freedom. However, despite the apparent ben-
efits, the number of degrees of freedom that can be considered is
often limited by the computational efforts required to solve the
constitutive set of equations representing the problem [5,17].
Under these conditions, researchers must find a compromise
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between the number of degrees of freedom and the quality of the
optimization process with respect to the global optimum.

In addition to the difficulty encountered during the optimiza-
tion process of multivariable problems, constraints are particularly
expensive to solve [1,6]. Search methods often rely on internaliza-
tion of constraints so that they are intrinsically treated (e.g., by
penalization) [6]. Hence, it is evident that the optimization
methodology of expensive problems, such as the ones relying on
the solution of a non-linear differential equation, should attempt
to deal with constraints internally. Furthermore, the above discus-
sion can be complemented by realizing that, when considering
highly complex systems, optimization theory studies have shown
that a global maximal or minimal value is arguably unobtainable
[6,18]. Nevertheless, it is also important to realize that higher com-
plexity levels (i.e., number of degrees of freedom) create systems
with robust features [1].

Therefore, new optimization techniques that can improve con-
vergence rates of optimization processes applied to complex sys-
tems are always welcome. In that respect, the present study
proposes the boundary condition optimization (i.e., the local heat
flux) of an internal forced convection problem (i.e., channel flow)
using shape functions, which are often used in finite element
methods [19–21]. In the methodology developed, the goal is to
obtain the optimal heat flux distribution on the channel wall which
leads to the lowest overheating scenario (i.e., minimized maximum
temperature within the channel), with the least computational
effort. For that the boundary conditions are divided in discrete ele-
ments, each being represented by a group of functions, of which
coefficients are then optimized. In order to further reduce compu-
tational time, the methodology to be presented is able to treat all
non-linear constraints internally.

2. Modeling

In this paper, the optimal heat flux distribution of a symmetri-
cally heated channel, which is internally cooled by forced convec-
tion and subjected to a fixed total heat transfer rate per unit of
length, is determined. Shape functions are used to obtain a chan-
nel’s optimized Neumann boundary condition distribution that
minimizes the overheating (i.e., Tmax) anywhere within the
domain. In order to demonstrate the effectiveness of this method

in comparison with optimized results based on constant heat flux
heaters as studied by Ref. [16], two classes of problems are consid-
ered. First, a developing thermal entrance length with a hydrody-
namic fully developed parallel plate flow (Case 1), which is
known as the Graetz problem [2], is studied. Second, the hydrody-
namic and thermally developing flow along a parallel plate channel
is considered (Case 2). The parallel plate domain is shown in Fig. 1.

For Case 1, the energy equation, Eq. (1), is solved with a fully
developed laminar parabolic profile. For Case 2, both the energy
and Navier–Stokes equations, which are respectively represented
in Eqs. (1) and (2), are solved for a constant velocity inlet. In both
formulations, the equations are solved in their dimensionless
forms in such a way that the representative dimensionless
parameters (e.g., Peclét or Reynolds and Prandtl numbers)
control all thermal and hydrodynamic parameters. The non-
dimensionalization parameters are shown in Eq. (3). Additionally,
the distance between the parallel plates is taken as 0.05 L (i.e.,
ReDh

¼ 0:1ReL).

~u � r~T ¼ 1
PeL

r � r~T ð1Þ

~ur � ~u ¼ �r~pþ 1
ReL

r � r~u ð2Þ

~x ¼ x
L
; ~u ¼ u

U
; ~p ¼ p

qU2 ;
~T ¼ T � Tin

q0=k
ð3Þ

Both Eq. (1) and Eq. (2) are solved numerically on a Cartesian
structured grid using a Finite Volume code developed in-house.
As shown in Fig. 1, the boundary conditions of the energy equation
are Dirichlet on the west border, Neumann (heat flux) on the north
border, symmetry on the south border and outflow (locally para-
bolic) on the east border. For the solution of the Navier–Stokes
equations, the PRIME (PRessure Implicit, Momentum Explicit)
method is used on a staggered grid, see Refs. [22,23], along with
Dirichlet boundary conditions on the west, south and north bor-
ders, and outflow on the east border. For both equations, the hybrid
interpolation scheme is employed. It is worth mentioning that the
Navier–Stokes equations were applied and solved on the entire
domain (i.e., channel length versus plate-to-plate spacing), while
the energy equation made use of symmetry and was only solved
on half of the domain.

Nomenclature

a shape function coefficient [–]
b shape function coefficient [–]
D diameter [m]
f normalized heat flux distribution [–]
g, h inadequate heat flux distribution [–]
h0 integrated inadequate heat flux distribution [–]
H shape function, integrated inadequate heat transfer

distribution [–]
k index
L length
p pressure [Pa], number of shape functions [–]
q0 heat flow per unit length [W/m]
q00 heat flux [W/m2]
Nu Nusselt number [–]
Pe Péclet number [–]
T temperature [K]
u,v velocity components [m/s]
U mean velocity [m/s]
x,y Cartesian coordinates [m]

Subscripts
b bulk
h hydraulic
i index
in inlet
k index
L length
m mean
s surface

Superscript
� dimensionless

Greek Symbols
/ general shape function [–]
s normalized computational time [–]
n mapping variable [–]
N number of boundary condition elements [–]
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