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a b s t r a c t

Numerical prediction of multiscale heat transfer is a challenging problem due to the wide range of time
and length scales involved. In this work a discrete unified gas kinetic scheme (DUGKS) is developed for
heat transfer in materials with different acoustic thickness based on the phonon Boltzmann equation.
With discrete phonon direction, the Boltzmann equation is discretized with a second-order finite-
volume formulation, in which the time-step is fully determined by the Courant–Friedrichs–Lewy (CFL)
condition. The scheme has the asymptotic preserving (AP) properties for both diffusive and ballistic
regimes, and can present accurate solutions in the whole transition regime as well. The DUGKS is a
self-adaptive multiscale method for the capturing of local transport process. Numerical tests for both heat
transfers with different Knudsen numbers are presented to validate the current method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many emerging nanostructures involve semiconductors and
dielectrics, in which phonon transport is the main mechanism for
heat transfer. Heat transfer process in systems with such nanos-
tructures usually involves multiple temporal and spatial scales
[1–3], and it is a challenging problem to develop efficient numeri-
cal methods that are applicable to different transport regimes.
Owing to the breakdown of Fourier law at small time and spatial
scales, and the high computational requirement of microscopic
molecular dynamics, the phonon Boltzmann transport equation
(BTE) [3,4] is regarded to be able to provide a good base for devel-
oping numerical methods for multiscale heat transfer when phase
coherence effects are unimportant. Actually, many numerical
schemes have been proposed to solve the BTE in previous studies
[5], including the stochastic Monte-Carlo (MC) method [6–8] and
the deterministic discrete ordinates method (DOM) coupled with
finite-difference, finite-volume, or finite-element discretization of
spatial space [9–13]. The lattice Boltzmann method (LBM), which
was originally developed for continuous fluid flows [14], was also
applied to phonon transport [15–18].

Generally, the MC method follows a time-splitting algorithm,
namely, the dynamics of a simulated particle is decoupled into
advection and scattering processes, and thus the time step used

is less than the relaxation time, and the grid size is less than the
phonon mean-free-path [19]. Consequently, the computational
costs of MC method are expensive in the acoustic thick regime,
which prohibit its applications for multiscale problems with diffu-
sive region, although it can be quite efficient for ballistic transport.
It is also noted that an improved MC method has been developed
recently by simulating only the deviation from equilibrium such
that the variance can be efficiently reduced in simulating systems
with small temperature variations [8]. In the DOM method, the
transient and advection terms in the BTE are usually discretized
with techniques that are adopted in computational fluid dynamics
(CFD), such as upwind (Step) and central (Diamond) finite-
difference schemes, or finite-volume schemes with upwind inter-
polations. These CFD techniques may introduce significant artificial
diffusions (low-order schemes) or numerical instability (high-
order schemes) [5]. Regarding the LBM for phonon transport,
although it has been applied to some nano and multiscale prob-
lems [15–18], some studies have shown that LBM may yield
unphysical predictions [20].

Recently, a finite-volume discrete unified gas kinetic scheme
(DUGKS) for molecule flows ranging from continuum to rarefied
regimes has been developed [21,22], which has high accuracy
and outstanding robustness. The nice asymptotic preserving (AP)
properties also remove the restriction on the time step by the
relaxation time that exists in other kinetic methods with direct dis-
cretization of the kinetic equation. Furthermore, the finite-volume
formulation enables the DUGKS to handle problems with complex
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geometries [23]. Some comparative studies suggest that the
DUGKS has better performances over the LBM even for continuum
flows [24,25]. In this work, we will extend the DUGKS to phonon
transport to construct an efficient method for the whole multiscale
heat transport process ranging from diffusive to ballistic regimes.

The remainder of the paper is organized as follows. Section 2
gives a brief introduction of the phonon BTE, and the DUGKS for
the BTE is described in Section 3. Some numerical simulations
are carried out in Section 4 to test the scheme, and finally a brief
summary is given in Section 5.

2. Phonon Boltzmann transport equation

In a rigid crystalline solids, the atomic vibrations from equilib-
rium positions can be quantized as quasi-particles known as pho-
nons, and the system can be considered as a domain filled with a
phonon gas. The angular frequency x of a phonon is related to
the wave number k 2 R3 through certain dispersion relations
x ¼ xpðkÞ, with different polarizations or modes of the phonon.
The phonon transport can be described by the Boltzmann transport
equation in the regime as the wave effects or phase coherence
effects are negligible [2],

@f p
@t

þ vp � rf p ¼ Qp; ð1Þ

where f p ¼ f pðx;k; s; tÞ (or ¼ f pðx;x; s; tÞ) is the distribution func-
tion dependent on wave number k (or frequency x), polarization
p, direction s, and position x as well as time t;vp ¼ @x=@k is the
group velocity with which the phonon of polarization p travels.
The term on the right hand side, Qp, represents the rate of change
of f p due to scattering interactions. Usually the scattering is very
complicated [3], and a more tractable model widely used is the
relaxation time approximation,

Qp ¼ � 1
sp

f p � f eqp
h i

; ð2Þ

where sp is the relaxation time, f eqp is the equilibrium distribution of
phonons and follows the Bose–Einstein distribution,

f eqp ¼ 1
exp �hx=kBTð Þ � 1

; ð3Þ

with �h being the Planck’s constant divided by 2p and kB the Boltz-
mann constant, respectively, and T is the temperature defined later.
The effective relaxation time sp usually depends on temperature
and frequency, and can be estimated using the Matthiessen’s rule
if the individual scattering processes are independent of each other
[1,26],

1
sp

¼ 1
sU

þ 1
sN

þ 1
sb

þ 1
si

þ � � � ; ð4Þ

where the relaxation times appearing on the right hand side are
those due to the umklapp (U) and normal (N) phonon–phonon scat-
terings, boundary scattering, impurity scattering, etc. With the
effective relaxation time, one can define the Knudsen number of
the system, Kn ¼ k0=l0, where l0 is the characterize length of the
system, and k0 ¼ v0s0 is the phonon mean free path with v0 being
a typical value of the phonon group velocity and s0 a typical value of
the relaxation time.

The total energy and the heat flux can be defined from the pho-
non distribution function [27],

E ¼
X
k;p

�hxðkÞf pðkÞ ¼
X
p

Z
4p

Z
�hxf pðxÞDpðxÞdxdX; ð5Þ

q ¼
X
k;p

�hxðkÞvpðkÞf pðkÞ ¼
X
p

Z
4p

Z
�hxvpf pðxÞDpðxÞdxdX; ð6Þ

where DpðxÞ is the density of state, and X is the solid angle. The
temperature T of the system can be obtained from T ¼ E=CV , with
CV being the volume specific heat capacity.

Even with the relaxation time approximation, the BTE is still
very difficult to be solved due to the high dimensionality. A num-
ber of tractable models have emerged to reduce the complex, such
as gray model, semi-gray model, non-gray model, and phonon
radiative transfer model [1,28]. To illustrate the essence of our
numerical method clearly without loss of generality, we will con-
sider the gray model with the Debye’s linear dispersion relation
in the present work. This simplified model assumes phonons of
all polarizations and frequencies are same and the group speed
vg is a constant and the BTE (1) is expressed in terms of the phonon
energy density e00ðx; s; tÞ [1],
@e00

@t
þ v � re00 ¼ Q � �1

s
e00 � eeq½ �; ð7Þ

where v ¼ vgs is the group velocity, s is the singlet relaxation time,
and e00 is the reduced distribution function for energy density,

e00ðx; s; tÞ ¼
X
p

Z
�hxf pðxÞDpðxÞdx: ð8Þ

Obviously, the total phonon energy E and heat flux q can be deter-
mined from e00,

E ¼
Z
4p

e00ðx; s; tÞdX; q ¼
Z
4p
ve00ðx; s; tÞdX: ð9Þ

The equilibrium distribution function eeq is just the angular
average of the total energy,

eeqðx; tÞ ¼ 1
4p

Z
4p

e00ðx; s; tÞdX ¼ E
4p

: ð10Þ

The gray model employs a single phonon group speed v in all direc-
tions and a single relaxation time s independent of polarization and
frequency. Despite the simple formulation, the gray model can pro-
vide some insightful predictions on the phonon transport behaviors
with acceptable accuracy, especially for low-thermal conductivity
dielectrics [13,12]. In the diffusive limit (Kn ! 0), it can be shown
that the solution of the kinetic Eq. (7) is determined by its average
E that obeys the diffusion equation (see Appendix A for details),

@E
@t

¼ r � jrTð Þ; ð11Þ

where the thermal conductivity is given by

j ¼ 1
3
CVv2

gs: ð12Þ

3. Numerical scheme

3.1. Updating rule in finite-volume formulation

Now we present the construction of the discrete unified gas
kinetic scheme (DUGKS) for phonon transport based on Eq. (7).
First, the continuous solid angle domain X is discretized into N dis-
crete angles using the discrete-ordinates method (DOM) based on
certain spherical quadratures, and correspondingly we obtain N
discrete directions si. The accuracy of the quadrature employed is
required to ensure the exact evaluation of the angular moments
of the distribution function up to certain orders, such as

Z. Guo, K. Xu / International Journal of Heat and Mass Transfer 102 (2016) 944–958 945



Download English Version:

https://daneshyari.com/en/article/7055331

Download Persian Version:

https://daneshyari.com/article/7055331

Daneshyari.com

https://daneshyari.com/en/article/7055331
https://daneshyari.com/article/7055331
https://daneshyari.com

