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We present an analysis of a free dendrite growing in a binary mixture under non-isothermal conditions.
The stable growth mode is analyzed through the solvability condition giving the stability criterion for the
dendrite tip as a function of the thermal Péclet number, Pr, and ratio, W = V/Vp, of the dendrite velocity
V and solute diffusion speed Vp in bulk liquid. We extend previous studies limited to small values of the
Péclet numbers, by considering the effect of the anisotropy of surface energy for the needle-like dendrite

é(e{‘é‘l’_‘gds", growing at arbitrary Péclet numbers and under local non-equilibrium solute diffusion described by a
lﬁt;r;a;::tlon hyperbolic type of transport equation. Transitions in growth regimes, namely, from solute diffusion-
Crystal limited to thermo-solutal regime and, finally, to pure thermally controlled regime of the anisotropic
Dendrite dendrite are derived and revealed. Limiting cases of known criteria for anisotropic dendrite growing at
Solute small and high growth Péclet numbers are provided. A comparison with the previously obtained criterion

Non-Fickian diffusion of marginal stability of rapidly growing dendrite is made.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solidification processes from supersaturated or undercooled
mixtures (suspensions, liqueurs, solutions and melts) exhibit for-
mation of dendritic patterns due to the Mullins-Sekerka instability
[1-4]. For description of crystal’s forms, classical Ivantsov’s solu-
tions [5-9] of the dendritic problem were obtained for needle-
like shapes of dendrites in the limit of zero surface tension. The
Ivantsov solution depends only on the Péclet number and in that
way it provides the first relationship between the dendrite tip
velocity V and the tip diameter p. Because the Ivantsov solution
does not provide information on V and p separately, a second con-
dition for these both parameters has been suggested in the form of
stability criterion [2]. This criterion follows from a solvability the-
ory which predicts the marginal mode of the dispersion relation for
perturbations on the anisotropic surface of dendrite [10,11]. Math-
ematically, the criterion allows for selecting a stable growth mode
from the continuous family of all available Ivantsov solutions for a
given Péclet number. As a result, the solvability theory predicts the
second combination of parameters in the following form

2dyD
-2, (1)
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where Dr is the thermal diffusivity, d, is the capillary length and ¢*
is the dimensionless scaling factor defined in the case of thermal
problem by the crystalline anisotropy as

B4, small Peclét numbers [10,11], Pe < 1,
0" x 54

77 arbitrary Peclét numbers [12,13], (2)
(1+ay~/pPe)

with Pe = pV/(2Dr) the Peclét number, 8 the stiffness (small aniso-
tropy parameter), and a; is a constant. Thus, the solutions of the
Ivantsov-type and the criterion of stable growth mode give a system
of equations that defines a unique combination of V and p for a
given undercooling or temperature gradient. Such predictions were
intensively tested against experimental data during past decades
[3,4,14,15].

Criteria (1), (2) of stable dendrite growth include crystalline
anisotropy of solid-liquid interface for the dendrite growth in a
pure (one-component) system. These criteria can be tested in a
computational experiment in which specially created conditions
are suitable only for the considered concrete limiting case
[16,17]. Additionally, a combination of two or more processes hav-
ing different length scales exists in real experimental conditions of
crystal growth. For example, influence of external electromagnetic
or gravitational fields, as well as transport processes in non-
isothermal multi-component mixtures, may drastically change
the crystal growth kinetics [18,15]. These processes should be
taken into account in the theory to predict formation of realistic
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crystal patterns originating under influence of predominant heat
and mass transfer [19,20]. Indeed, bulk transport of heat and mass
together with interfacial properties (anisotropy of surface energy
and growth kinetics) drastically affect on the shape of dendritic
crystals in inorganic and organic mixtures [21,22]. As experiments
show, anisotropy of crystalline growth controls formation of den-
dritic nanostructures and highly ordered fractal-like aggregates
[23,24]. Control of growing nano-crystals may also be provided
in suspensions by changing the chemical content and chemical
reactions together with anisotropy of growth [25-29]. Also, it is
important to note that modern experimental techniques for inor-
ganic samples allow access large undercoolings, high temperature
and concentration gradients as well as fast velocities of phase
transformations. For example, in observation and evaluation of
crystal growth kinetics during experimentation with levitated melt
droplets [30,31], the interface velocity reaches the values of
10 — 100 m/s and the liquid phase can be undercooled in a wide
range from 10 to 400 K below the liquidus temperature [32]. For
the large driving forces connected with such undercoolings and
with increasing crystal growth velocity, deviations from local ther-
modynamic equilibrium occur at the advancing solid-liquid inter-
face, and metastable states can be retained in the bulk phases [18].
More specifically, the formation of metastable supersaturated solid
solutions has been evidenced for the case of rapid dendritic growth
[31]. Theoretical predictions of the formation of metastable phases
are based on models that include deviations from local thermody-
namic equilibrium at the dendritic interface and in diffusion field
which result in hyperbolic mass transport equation for solute dif-
fusion [33,34]. The validity of hyperbolic type models has been ver-
ified in molecular dynamics simulations of solute trapping effect
by the rapidly moving fronts [35] and by coarse graining deriva-
tions of equations of fast phase transitions [36]. Therefore, the
main goal of the present work is to advance the theory of crystal
growth for simultaneous inclusion of significant effects which
may manifest in a wide range of solid-liquid interface velocity.

The focus of the present work lies in description of a whole
measurable range [32,18] of undercoolings, temperature gradients,
cooling rates and solidification velocities on the basis of unified
approach to dendritic growth phenomenon. Such motivation
requires a development of a theory for the stable mode of the
non-isothermal dendrite growing in a chemically binary system
with anisotropy of the solid-liquid interface.

2. Statement of the problem

Consider the growth of a parabolic dendrite in a binary under-
cooled liquid under local non-equilibrium conditions. In the case
of isotropic shape of dendrite, such system was analyzed in
Refs. [33,34]. In the present work, we re-formulate equations for
the same local non-equilibrium system additionally to the aniso-
tropic dendrite growth.

Neglecting the diffusion in the solid phase (due to much slower
diffusion transport in comparison with diffusion in the liquid
phase) and convection of the liquid, the concentration field is
governed by

2
rD%—g’+%ct’=DcV2c,, 3)
where C; is the solute concentration in the liquid, D¢ is the diffusion
coefficient of a solute, t is the time and tp is the time of the local
diffusion relaxation of the mass flux to its steady-state value.

Because a characteristic relaxation time of the temperature field
is much faster than a relaxation time of the solute concentration,
the heat transfer in both phases is described by the parabolic
equations:

% = D;V*T,, % = DrV*T,, 4)
where T; and T; are the temperatures in the liquid and solid phases,
respectively, and Dr stands for the thermal diffusivity equals in both
phases.

At the dendritic interface, conservation of mass and energy
gives the boundary conditions of the form

T (G C) ] 4 (€~ C3) i DV Gy i =0, )

To? - fi = Dy(VTs — VT)) -, (6)

where i is the unit vector normal to the dendrite interface, ? is the
interface velocity, k, is the interface velocity dependent coefficient
of the solute distribution,

Cs = k,C (7)

is the concentration in the solid phase at the dendritic interface,
To =Q/c, is the temperature for adiabatic crystallization (or the
measure of hypercooling limit), Q is the latent heat released per unit
volume of solid and c, is the specific heat at a constant pressure.
The temperature at the dendrite interface T; = T; = T; is a func-
tion of the crystallization temperature Ty of a pure liquid, velocity-
dependent liquidus slope m,, solute concentration C;, anisotropic
capillary length d(0, ¢) and the local curvature 1/R of the front

Ti =Ty —m,C — ToR'd(0, ¢). (8)

Here 0 and ¢ are the spherical angles which define the orientation
of the normal to the dendrite interface to its growth direction.

In the case of the cubic symmetry, the capillary length d(0, ¢) is
described by

do, ¢) = do{l - ﬁ[cos“ 0+ sin* 0(1 — 2sin® ¢ cos? </>>] }, 9)

where dy is the capillary constant and g stands for the stiffness
which depends on a small anisotropy parameter & of surface
energy. Considering a case of axisymmetric needle-like crystal, Eq.
(9) can be reduced by averaging over ¢ to the following form (see
Ref. [37])

d(0) = do{1 — pcos (40)}, (10)

in which the stiffness is given by g = 15¢. for cubic crystals. We
assume that the selection criterion ¢*, which will be obtained in
the following analysis, must have the scaling ¢* « " with the same
exponent n and the same general form [see, for example, Eq. (2)] if
the anisotropy (9) or (10) are taken into account. An existence of the
same scalings in these cases has been shown in Refs. [38,39] in
which a difference consists only in a constant of proportionality
for the scaling ¢* o p". Therefore, for obtaining selection criterion
o* we shall use the case of simplest form of anisotropy (10) under
the assumption that the final scaling might be applied to the three
dimensional case of dendrite growth.

The velocity-dependent functions of kinetic liquidus slope m,
and non-equilibrium solute partitioning k, are defined, respec-
tively, as [40,41]

my(V) =5 Teke {1 —k,+1n <i—:> +(1- k,,)zle}, V < Vp,

m. Ink,
= Ve Ve (11)
and
2 2
ko(V) = (1 =V Vp)lke + (1 —ke)Coo] + V/VDI’ V<V,

1-V2/VE+V/Vpy
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