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a b s t r a c t

The prediction of the heat transfer between a fluid and a solid object, known as conjugate heat transfer, is
a very common problem in engineering sciences. This work investigates coupling methods which allow to
solve such problems numerically by using separate solvers for both domains. The methods converge to
the conjugate solution by exchanging boundary conditions at their interface. We review three known
methods while postulating a forth novel method with improved stability properties.
Even though this coupling methods use standard solvers for each domain with known stability prop-

erties, many reports in the literature are found on instabilities occurring during the coupling procedure.
While it is known that the origin of this problem lies at the exchange of boundary conditions, to date no
closing stability criterion could be found.
The present work aims to provide a quantitative answer as to why these instabilities occur and to pro-

vide guidelines with respect to the use of the different methods. A new stability criterion is derived based
on several simplifications. It shows that each method has its own stability limit and can be used within a
specific range of applications, mainly dominated by the Biot number. Although the criterion is derived by
making strong assumptions, it is validated through series of numerical experiments on a flat plate test
case. It shows that we have correctly identified the mechanism leading to instabilities.
Finally, we compare the novel coupling strategy with the established methods. Considering the stabil-

ity the new approach is advantageous especially for high Biot numbers, concluding that it can improve
efficiency and accuracy of conjugate heat transfer computations.

� 2016 Published by Elsevier Ltd.

1. Introduction

Conjugate heat transfer (CHT) is the transfer of heat between a
solid and a surrounding fluid. It is prevalent in engineering
sciences (e.g. [1,2]) and was first formulated by Perelman [3].
The correct prediction of conjugate heat transfer requires to simul-
taneously solve for the heat conduction in the solid and the
Navier–Stokes equations in the fluid, where at the interface
between both domains the temperature and heat flux have to be
treated as unknowns and are found during the solution of the cou-
pled problem.

Over the past half century, many analytical and numerical pre-
diction methods have been proposed to deal with CHT problems.
Two main strategies exist, depending on how the continuity of
temperature and heat flux are imposed on the common wall
between fluid and solid.

One approach integrates the entire set of equations in the fluid
and solid as a single system and treats the continuity of tempera-
ture and heat flux implicitly. The coupled system of equations is
solved together. This monolithic approach, in the literature some-
times referred to as the conjugate method, is computationally effi-
cient, but requires that both the fluid and solid are put together
into a unified framework.

A second approach calculates separately the flow and the ther-
mal field with a coupling provided by the boundary conditions at
the interface. This approach allows different stand-alone flow
and solid platforms to be used within an iterative procedure to
obtain the continuity of temperature and heat flux. The drawback
of this partitioned approach, also known as the coupled method, is
the need for sequential iterations between the two platforms
which can lead to instabilities. Because in most cases different spa-
tial discretizations are used in both domains and different grid
refinements are imposed, an interpolation of the boundary condi-
tions from one grid to the other is required. This, however, can also
be present in a monolithic approach.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.041
0017-9310/� 2016 Published by Elsevier Ltd.

⇑ Corresponding author at: Queen Mary University of London, Mile End Road, E1
4NS London, UK.

E-mail address: tom.verstraete@vki.ac.be (T. Verstraete).

International Journal of Heat and Mass Transfer 101 (2016) 852–869

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.05.041&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.041
mailto:tom.verstraete@vki.ac.be
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.041
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


The fluid domain is governed by a set of non-linear partial dif-
ferential equations, which are typically solved by an iterative tech-
nique. The solid domain, however, is governed by a linear elliptic
partial differential equation which allows for a direct solution. This
difference between both domains allows for different solution
strategies of the coupled problem, where the exchange of bound-
ary conditions can be put at different levels of advancement of
the fluid solution, while the solid solver can be iterative as well
as direct. To avoid confusion, we will reserve the term ‘‘iteration”
from hereon exclusively for referring to a coupling iteration where
both the fluid and solid simulations are run, while we will use
‘‘time step” to denote an advancement in the individual conver-
gence of the fluid or solid domain, even though the iterative tech-
niques used to solve both domains individually may differ from a
time marching approach.

Even though CHT introduces only a weak coupling between two
domains through the exchange of boundary conditions at their
interface, the stability properties of the coupled system will in gen-
eral be severely modified compared to the individual problems and
a stability analysis is necessary.

Giles [4] provided a pioneering stability analysis of the solid–
fluid coupling. The stability of a 1D model is analyzed by applying
the stability theory of Godunov and Ryabenkii [5] on the dis-
cretized set of equations. Several simplifications are made, such
as a uniform grid on both sides of the interface and the omission
of the convection terms in the fluid domain. The latter one simpli-
fies the fluid equations to the ones governing in the solid domain,
however with a much lower conductivity. Giles concluded that the
key point for achieving numerical stability is the use of Neumann
boundary conditions (heat flux) for the structural calculation and
Dirichlet boundary conditions (temperature) for the fluid calcula-
tions. However, this does not correspond to the stability behavior
found in practice, as will be discussed in Section 3. The main reason
is that Giles uses a time marching technique (both explicit and
implicit) in solid and fluid domains, and updates the boundary con-
ditions at every time step. A common practice for coupled methods
is to use a steady state solver for the solid which provides immedi-
ately a steady state response to a given boundary condition and not
a transient one as assumed by Giles. Similarly, in the fluid domain
the boundary condition is only updated after a given number of
time steps and not after each time step to decrease the computa-
tional cost.

Heselhaus [6] extended the theory of Giles by implementing
convective boundary conditions for the solid domain and investi-

gated the stability behavior if boundary conditions are exchanged
after 2 time steps instead of one. It was shown that the method
gains stability with increasing number of time steps.

More recently, Errera et al. [7] extended the theory of Giles fur-
ther to coupling methods which use Robin boundary conditions at
both domains, and for which the solid solver is a steady state one.
They propose for the first time an optimal value for the heat trans-
fer coefficient.

Most practical applications of the coupled method use a steady
state solver for the solid domain while the boundary conditions for
the iterative fluid solver are only updated after a sufficient number
of time steps. This is motivated by a reduction in total computa-
tional time, where a balance is sought between converging the
fluid domain on one side, and obtaining convergence of the
fluid–solid coupling iterations on the other side. Too few time steps
spent in the fluid domain would lead to a slow convergence of the
coupling algorithm to settle the boundary condition, conversely,
too many time steps would lead as well to a larger overall compu-
tational time, as time is lost on converging the fluid domain with
wrong boundary conditions. A trade-off solution converges the
fluid simultaneously with the boundary conditions and thus
advances the fluid domain over multiple time steps before updat-
ing its boundary condition.

Most practical applications of the coupled method use a steady
state solver for the solid domain while the boundary conditions
for the fluid solver are only updated after a sufficient number of
time steps. Indeed, an update at each fluid time step would only
mean a small modification with respect to the previous state, while
requiring a considerable computational cost since the steady state
solution of the solid would be required. A large reduction in total
computational time can thus be obtained if the boundary condition
of the fluid is updated only after a sufficient level of advancement in
time, which will lead to a significant change of the boundary condi-
tion for the next coupling iteration. This practice is, however, not
reflected in the currently known methods for the stability analysis,
and hence leads to a discrepancy between observed and predicted
instabilities. The aim of the present work is thus to reconsider the
stability of coupling schemes where boundary conditions are
exchanged only after multiple time steps on the fluid and solid
domains, to guarantee a fast convergence of the coupled problem.

The aim of the present work is thus to reconsider the stability of
coupling schemes where only after a sufficient number of time
steps on the fluid and solid domains exchanges of boundary condi-
tions are performed.

Nomenclature

b thickness of solid flat plate, [m]
Bi Biot number
B; K coefficients for analytical solution
c speed of sound, [m s�1]
h heat transfer coefficient, [W m�2 K�1]
L characteristic length, [m]
q heat flux, [Wm�2]
R gas constant, [J1 K�1 mol�1]
Re Reynolds number
T temperature, [K]
t time, [s]
u; v; w velocity components, [m s�1]
a0 error
b relaxation coefficient
d boundary layer thickness
m kinematic viscosity, [m2 s�1]

l dynamic viscosity, [Pa s]
q density, [kg m�3]
k thermal fluid conductivity, [W m�1 K�1]
CFD computational fluid dynamics
CHT conjugate heat transfer
FEM Finite Element Method
FFTB flux forward temperature backward
hFTB heat transfer coefficient forward temperature backward
hFFB heat transfer coefficient forward flux backward
RANS Reynolds-averaged Navier–Stokes
TFFB temperature forward flux backward
i index for iteration
fl fluid
s solid
w quantity at the wall
1 free stream quantity
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