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a b s t r a c t

We have developed mathematical models in both one and two spatial dimensions for the solidification of
silicon. The one-dimensional model describes slab casting related to a set of thin-casting experiments.
The model is fitted to thermocouple data and accounts for various heat transfer mechanisms as well
as the latent heat. The model can be used to predict the time taken for the material to completely solidify
and the solidification distance (the point where solidification fronts meet which can be observed as a dis-
continuity in the grain microstructure). Simple approximate analytical results, which agree very well
with the full-scale numerical solutions on Matlab and COMSOL, are provided. The two-dimensional
model relates to a wedge casting experiment where, again, various heat transfer mechanisms and latent
heat need to be accounted for. Experimental data from thermocouples is used to quantify the heat trans-
fer coefficients by fitting to two-dimensional COMSOL simulations. A very simple analytical ‘‘Triangle
model” is derived by assuming that the solidification fronts move as flat surfaces from each of the two
wedge walls and the air surface, independently of each other, as three separate one-dimensional
quasi-steady approximations. This model predicts that the area of liquid silicon will diminish as shrinking
self-similar triangles. This simplified model provides analytical results for the solidification time and dis-
tances which agree very well with the COMSOL simulations.

� 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Newmarkets demand high yield silicon of a more homogeneous
consistency. It is well known that the cooling rates and mould size
affect the microstructure and homogeneity of silicon during cast-
ing. The aim of this paper is to gain insight into the cooling rates
that occur in two casting geometries. Typically, when cooling rates
are too fast the silicon grains are very small (see Fig. 1), causing
dust, or ‘fines’, losses in the post-casting stage when the silicon is
re-crushed. Although the yield is reduced, the small grains allow
for a homogeneous distribution of impurities, which is an advan-
tage in the silicon alloy industry. In contrast, when the silicon is
cooled too slowly, the grains which form are much longer and hold
impurities in the grain boundaries. These impurities are therefore
distributed in a less homogeneous manner and, in fact, when the
silicon is re-crushed, a large portion of them drop out from the long
grain boundaries and are lost. For more specific details on the
microstructure of silicon, see [1,2].

Recent experiments have shown that the casting of silicon in
small, thin containers shows promise for creating materials with
good homogeneity. Hence the emerging interest in the silicon
industry of the so-called ‘thin-casting’ technique. One dimensional
solidification models are appropriate in thin casts where the aspect
ratio is small. There has been extensive work on the mathematical
modelling of these types of ‘Stefan problems’ where there is a solid-
ification front which moves like the square root of time [3–9]. In
these examples, similarity solutions only exist in the case of Dirich-
let (constant temperature) or Neumann (no heat flux) boundary
conditions and are therefore limited. In the case of small Stefan
number, quasi-steady approximations can be made, rendering the
problem considerably easier to solve [10,11]. The existence of mov-
ing boundaries tend to make these problems difficult for numerical
simulation yet many approaches have been examined [12–16]. This
paper provides an analysis of the advantages and disadvantages of
some of these analytical solutions for the purpose of direct compar-
ison with silicon solidification experiments at Elkem and numerical
simulations generated using COMSOL [17] and Matlab [18]. In par-
ticular, we find that the quasi-steady solution with linearised
boundary conditions performs very well whilst providing simple
analytical expressions for the temperature profile and position of
the moving boundary. The application of the quasi-steady approx-
imation to the domains and boundary conditions in this paper
has not been explored in the literature. Furthermore, they are novel
applications of mathematical modelling within the silicon manu-
facturing industry. The quasi steady solution, together with the
parameter estimations given by the numerical simulations, will
be useful for silicon manufacturers to predict the thermal history
of the silicon and give approximate results for the solidification
time and distance. The results will also apply to other solidification
industries where the Stefan number is relatively small.

We will consider the case where the solidification of 100% pure
silicon takes place due to cooling from both the metal mould and
the surrounding air. The importance of different cooling mecha-
nisms and cast depths will be investigated. We will use thermal
data taken from these experiments to estimate the parameter val-
ues. The pure silicon case will give insight into the expected cool-
ing rates that will be encountered even when impurities are
present and is much simpler to analyse.

Nomenclature

cpi i ¼ l; s. The specific heat capacity of liquid (l) and solid
(s) silicon

d the depth of the silicon melt
D the solidification distance
hc the conductive heat transfer coefficient
ha the convective heat transfer coefficient
ki i ¼ l; s. The thermal diffusivity of liquid (l) and solid (s)

silicon
K the ratio of solid to liquid thermal diffusivities
j K multiplied by the ratio of solid to liquid specific heat

capacities
L the latent heat of silicon
n the outward facing unit normal to an interface
Nc the Nusselt number for conductive heat transfer to the

mould
Na the Nusselt number for convective heat transfer to the

air
Nr the Nusselt number for radiative heat transfer to the air
qi i ¼ l; s. The heat flux in the liquid (l) and solid (s) silicon
q the density of silicon

si i ¼ 1; 2. The positions of the solidification fronts
r the Stefan–Boltzmann constant
St the Stefan number
t� the solidification time
Tm the melting temperature of pure silicon
T0 the initial temperature of the liquid silicon before

cooling
T1 room temperature
Tinit the non-dimensional initial temperature of the silicon

melt
TA the non-dimensional room temperature
h the enthalpy
H the non-dimensional enthalpy
Vn the speed of the solidification front in the normal direc-

tion
x the position of the solidification front in two dimensions
/ the wedge angle coordinate
a the wedge angle

Fig. 1. Fast solidification leads to small grains and a homogeneous distribution of
impurities but large loss of yield due to wasted dust (fines) when material is re-
crushed. Slow solidification leads to large grains and an inhomogeneous distribu-
tion of impurities, large-scale segregation in grain boundaries but high yield. We
can see here that solidification occurred more quickly at the bottom edge of this
sample due to the smaller grains. (Taken from experiment at Elkem on 04/06/15.)
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