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a b s t r a c t

This paper describes a numerical investigation of the influence of axial and dipolar magnetic fields on the
stability of the convective flow of an electrically conductive Boussinesq fluid in a spherical gap for the
radius ratios g = inner radius/outer radius = 0.4, 0.5, and 0.6. The inner shell is warmer than the outer
shell. We show that whereas the axial magnetic field stabilizes the flow for low Hartmann numbers, a
destabilizing effect is detected if the magnetic field increases. On the other hand, numerical analysis
shows that the dipolar magnetic field configuration stabilizes the flow. The critical wave number, mc ,
is much higher than that for the axial magnetic field. The critical Grashof numbers are presented as a
function of the Hartmann number for both configurations of the B-field. The stability analysis is
accompanied by calculations of the 3D flows.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of convective flows in spherical geometries
plays an important role in many technical and industrial applica-
tions, e.g. solidification [1,2], and energy storage. Furthermore,
buoyancy-driven flows are of interest in fundamental processes
such as the investigation of nonlinear effects, leading to a rich vari-
ety of bifurcations and transitions to chaos [3–5].

Let us suppose that a steady external magnetic field is applied.
Magnetohydrodynamic effects become important if the electrical
conductivity of the working fluid is high. Usually, liquid metals
such as mercury or In-Ga-Sn (� 106X�1 m�1) are used. Note that
because of low kinematic viscosity and high thermal diffusivity,
the Prandtl number is low (Pr ¼ 0:015 is used in this study).

The next issue is the kind of B-field to be applied. When
restricted to steady fields, there are few possibilities. First, the
magnetic field should be axisymmetric. This choice of B-field does
not change the axisymmetric structure of the basic flow. Therefore,
after the evaluation of the basic flow, linear stability analysis can
be performed, and the influence of the B-field on the stability of
the basic flow can be determined. Second, the magnetic field
should obey a conditionr� B ¼ 0. If this condition is not satisfied,
additional electric currents which influence the flow occur. Taking
into account these two conditions, two B-field configurations are
most natural: axial Baxial ¼ B0ðcos her � sin hehÞ and dipolar

Bdipolar ¼ B0ð2r�3 cos her þ r�3 sin hehÞ. We know from the literature
dealing with the influence of axial [6–8] and dipolar [9] fields
and combinations of both [10] on the spherical Couette flow
(SCF) that the fields produce different flow structures, i.e. due to
the formation of unexpected boundary-layer-stability regimes
and bifurcation scenarios. Therefore, it is important to investigate
the influence of the above fields on convective flows.

This study is, on the one hand, a continuation of [11], in which
the convectively driven flow was investigated under the influence
of an axialmagnetic field. The stability problem is solved in [11] for
Hartmann numbers from 0 to 20, where the radius ratio g changes
from 0.4 and 0.8. We found that the axial magnetic field stabilizes
the convective flow, i.e. the critical Grashof number, Grc , increases
with an increase in Ha. We expanded upon this research, consider-
ing the same problem for larger Hartmann numbers, and found
that the curve of the marginal stability had an unusual shape. If
the Hartmann number exceeds a particular value, the critical Gra-
shof number drastically decreases. Therefore, an external axial
magnetic field destabilizes buoyancy-driven flows.

On the other hand, new research discussing the influence of the
dipolarmagnetic field on the convective flow has been presented. It
has been established that the dipolar magnetic field makes the
basic flow very stable. This stabilization effect is accompanied by
a drastic increase in the critical azimuthal modes, mc .

An additional motivation for these investigations is the similar
analysis of the influence of the axial magnetic field on the stability
of the convective flows in rectangular [12,13] and cylindrical [14]
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cavities. Whereas with the rectangular geometry the stability
curves, i.e. GrcðHaÞ, have been established as displaying complex
shapes, in the cylindrical cavity, the axial magnetic field is seen
to have a strongly stabilizing effect on the convective flow. There-
fore, performing the stability analysis for some radius ratios g in
the spherical geometry improves our understanding of the influ-
ence of magnetic fields on convective processes.

The direct numerical simulations of the three-dimensional
flows performed for both configurations of the B-field not only
confirm the results obtained via the linear stability method but
also provide better understanding of the mechanism of the
instability.

This paper is organized as follows. After the problem is formu-
lated in Section 2, the numerical method is presented, accompa-
nied by test calculations (Section 3). The structure of the basic
flow for both structures of applied magnetic field is discussed in
Section 4. Methods for investigating the stability are formulated
in Section 5. Section 6 records the results of the stability analysis
in terms of linear stability theory. An investigation of stability is
accompanied by an energy analysis using the Reynolds–Orr equa-
tion. Nonlinear calculations of the supercritical flows are presented
in Section 7.

2. Equations

A Newtonian fluid with a kinematic viscosity m, a density q, and
an electrical conductivity r between two spherical surfaces with
an inner radiusR1 andanouter radiusR2 is considered. The inner sur-
face is maintained at a constant temperature T1; the outer surface is
maintained at T2 such that T1 > T2. The Boussinesq approach is used
to describe the buoyancy force: q ¼ q0ð1� bðT � T2ÞÞ (see Table 1).
The system is subjected to either an axial magnetic field
Ba ¼ B0ðcos her � sin hehÞ or a dipolar magnetic field
Bd ¼ B0ð2 cos her þ sin hehÞ=r3 of constant magnitude B0. The mag-
netic Reynolds number is Rm � 1; therefore, the low Rm approxi-
mation can be used [15].

The non-dimensionalized equations are

@u
@t

� u�r� u ¼ �rpþ GrTez þ Duþ FL; ð1Þ

@T
@t

þ u � rT ¼ 1
Pr

DT; ð2Þ

r � u ¼ 0: ð3Þ
The length has been scaled by the gap width D. The time has been
scaled by the viscous timescale D2=m. The velocity field has been
scaled by m=D. The pressure has been scaled by qm2=D2. The temper-
ature has been scaled by DT ¼ T1 � T2. The magnetic field has been
scaled by B0. Here, Gr ¼ bgDTD3=m2 is the Grashof number and
Ha ¼ B0D

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qm

p
is the Hartmann number. The Lorentz force FL

takes the form FL ¼ Ha2J� ea;d. The electrical current J can be found
using Ohm’s law and conservation of charge

J ¼ ð�rV þ u� ea;dÞ; ð4Þ

r � J ¼ 0: ð5Þ
A Poisson equation for the electric potential V

DV ¼ ea;d � r � u ð6Þ
must be solved together with Eqs. (1)–(3). The boundary conditions
for the temperature are:

T g
1�g

¼ 1; T 1
1�g

¼ 0: ð7Þ

The no-slip conditions for the velocity field are given by

ur ¼ 0; uh ¼ 0; u/ ¼ 0 ð8Þ
on r ¼ g=ð1� gÞ and r ¼ 1=ð1� gÞ.

Furthermore, for electrically insulated surfaces, the following
boundary condition

@V
@r

¼ 0 ð9Þ

holds on both surfaces.

3. Numerical method and test calculations

An equation system in Eqs. (1)–(6) with the boundary condi-
tions in Eqs. (7)–(9) has been solved using the pseudospectral
method using the numerical code developed by R. Hollerbach
[16]. The velocity field can be represented in terms of the poloidal
(U)-toroidal (W) potentials as follows:

u ¼ r�r� ðUerÞ þ r� ðWerÞ: ð10Þ
Substituting Eq. 10 into Eq. (1) and applying the operations

rotrot and rot not only eliminates pressure but also leads to sepa-
rated equations for the potentials U and W. Therefore, instead of
one vector equation, as in Eq. (1), we obtain two scalar equations:
a fourth-order equation for U and a second-order equation for W:

Table 1
List of parameters.

er ; eh ; e/ unit vectors in radial, polar
and azimuthal directions

ea cos her � sin heh
ed 2r�3 cos her þ r�3 sin heh
r radial coordinate
x radial coordinate (x 2 ½�1;1�), rðxÞ ¼ 1

2 xþ 1þg
1�g

h i
u velocity field
ur ;uh;u/ radial, polar and

azimuthal velocity components
u0 velocity field (basic flow)
u0r ;u0h radial and polar

velocity components (basic flow)
~u velocity field perturbation
t time
Dt time step
p pressure
~p pressure perturbation
B0 applied magnetic field
V,T electric potential, temperature
V0; T0 electric potential, temperature (basic flow)
~v electric potential perturbation
FL Lorentz forceeFL

Lorentz force perturbation

J electrical current density
mc critical wave number
Gr Grashof number, bgDTD3=m2

Ha Hartmann number, B0D
ffiffiffiffiffiffiffiffiffiffiffiffi
r=qm

p
Pm magnetic Prandtl number, m=a
Pr Prandtl number, m=j
Rm magnetic Reynolds number, Rm ¼ UD=a
R1;R2;D inner radius, outer radius, R2 � R1

Greek symbols
a magnetic diffusivity
b volume expansion constant
m kinematic viscosity
g radius ratio, R1=R2

j thermal diffusivity
r electrical conductivity
q density
k eigenvalue (¼ cþ ix)
x frequency of critical mode and ImðkÞ
U0 poloidal function of the basic flow
~U; ~W poloidal and toroidal functions of the perturbation

H perturbation for temperature
U;W poloidal and toroidal functions
v stream function of the basic flow
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