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a b s t r a c t

In this paper, a new single interface integral equation method is presented for solving transient heat con-
duction problems consisting of multi-medium materials with variable thermal properties. Firstly, adopt-
ing the fundamental solution for the Laplace equation, the boundary-domain integral equation for
transient heat conduction in single medium is established. Then from the established integral equation,
a new single interface integral equation is derived for transient heat conduction in general multi-medium
functionally graded materials, by making use of the variation feature of the material properties. The
derived formulation, which makes up for the lack of boundary integral equation in solving multi-
medium problems, has the feature that only a single boundary integral equation is used to solve
multi-medium transient heat conduction problems. Compared with conventional multi-domain bound-
ary element method, the newly proposed method is more efficient in computational time, data preparing,
and program coding. Based on the implicit backward differentiation scheme, an unconditionally stable
and non-oscillatory time marching solution scheme is developed for solving the time-dependent system
of differential equations. Numerical examples are given to verify the correctness of the presented
method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the advantages of semi-analytical feature and dimensional
reduction characteristic, the boundary element method (BEM) has
been successfully applied to solve transient heat conduction prob-
lems [1–4]. According to the differences of solution procedures,
most of the existing approaches can be classified into two broad
categories: the transformed space approach (Rizzo and Shippy
[5]; Sutradhar et al. [6]; Sutradhar and Paulino [7]; Simoes [8];
Guo et al. [9]), and the time domain approach (Wrobel and Brebbia
[10]; Ochiai et al. [11]; Tanaka et al. [12]; Yang and Gao [13]; Al-
Jawary et al. [14]; Yu et al. [15]). In the transformed space
approach, the time dependent derivative is removed by applying
an algebraic transform variable, and the system of equations is
solved in the transform space, then inverse transform is employed
to reconstitute the solution in time domain. This method does not
require time marching, and usually leads to an accurate result.
However, it is very difficult to determine the transformation
parameter, and for many practical problems, a large number of
sampling frequencies is required to obtain an accurate solution,

therefore the numerical inverse transformation is very time-
consuming and an accelerated technique is usually needed [6].
The other kind is the time domain approach, by which the solu-
tions are found directly in the time domain. One implementation
of the time domain approach is the use of time-dependent funda-
mental solution [10,11], that can result in a pure boundary integral
equation algorithm. However, numerically evaluating the bound-
ary integrals requires both space and time discretization. More
details about time-dependent fundamental solution approaches
can be found in the works of Wrobel and Brebbia [10] and Ochiai
and Sladek [11]. Another implementation of the time domain
approach is to employ the fundamental solution for the Laplace
equation, and transform the volume integrals associated with time
dependent derivative into equivalent boundary integrals. Among
the transforming techniques, the dual reciprocity method (DRM)
[16,17], Multiple reciprocity method (MRM) [18], and radial inte-
gration method (RIM) [19] are most widely used.

For non-homogeneous materials, Kassab and Divo [20,21]
derived a generalized fundamental solution for steady heat con-
duction in isotropic and anisotropic media with spatially varying
thermal conductivity. Then by adopting the generalized fundamen-
tal solutions for non-homogeneous media, a generalized dual
reciprocity BEM is presented for solving transient heat conduction
problems in non-homogeneous media [22]. Based on a moving
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least square approximation of physical fields, Sladek and Sladek
[23,24] proposed a local boundary element method for transient
heat conduction analysis in functionally graded materials.

Taking the advantages of both finite volume and finite element
methods, the control volume-based finite element method
(CVFEM) can be used to simulate multi-physics problems in com-
plex geometries [42–45]. By using CVFEM, Soleimani et al.
[42,43] studied influence of an external magnetic field on ferrofluid
flow and heat transfer in a semi annulus enclosure with sinusoidal
hot wall [42], and investigated the force convection heat transfer in
a lid driven semi annulus enclosure [43]. By using Lattice Boltz-
mann Method (LBM), Soleimani el al. [46] investigated the magne-
tohydrodynamic free convection flow of CuO – water nanofluid in a
square enclosure with a rectangular heated body.

Transient heat conduction BEM has been broadened to a wide
range of engineering problems, including non-homogeneous, ani-
sotropic, and non-linear problems. But most studies mainly focus
on single medium. However, most engineering problems involve
objects composed of different materials. Therefore, it is important
to develop a multi-medium BEM to solve wider range of engineer-
ing problems. The conventional widely used technique solving
multi-medium problems is the multi-domain boundary element
method (MDBEM) [25–29]. The basic idea of this method is that
the whole domain of concern is broken up into a number of sepa-
rate sub-domains, then a boundary integral equation is written for
each sub-domain, and the final system of equations is formed by
assembling all contributions of the discretized integral equations
for each sub-domain based on the compatibility condition and
equilibrium relationship. Adopting the combination of domain
decomposition technique with a region-by-region integration algo-
rithm, Divo and Kassab [30] developed a parallel BEM algorithm for
solving large-scale, nonlinear heat conduction problems. In the
transient heat conduction field, Erhart et al. [31] developed a par-
allel domain decomposition Laplace transform BEM algorithm for
solving the large-scale transient heat conduction problems.
Recently, Gao et al. [25,32,33] proposed a three-step multi-
domain BEM for solving multi-medium non-homogeneous
problems.

Although MDBEM is flexible in solving multi-medium prob-
lems, it has disadvantages in data preparation and computational
time, since twice the element information over the same interface
needs to be defined for the adjacent two sub-domains, and twice
integrations need to be carried out over interface elements. More-
over, the variable condensation and assembling processes require a
higher coding skill to develop a universal program, which heavily
influences the computational efficiency. Tracing the issue to its
source, the existing boundary integral equations were established
on a single medium assumption, therefore it is awkward to solve
multi-medium problems through using MDBEM, which involves
tedious domain decomposing and assembling processes.

Recently, Gao and his coworkers proposed a single integral
equation method, named interface integral BEM (IIBEM), for solv-
ing multi-medium problems [34–37]. Through a degeneration
method from domain to interface integrals, the integral equation
for solving single medium problems can be extended to interface
integral equation capable of solving multi-medium steady heat
conduction [34], elasticity [35,36] and elastoplasticity [37] prob-
lems. Comparing with the conventional boundary integral equa-
tion, an additional interface integral appears in the basic integral
equation, embodying the difference of material properties between
two adjacent media. The derived formulations made up for the lack
of a boundary integral equation in solving multi-medium prob-
lems. Compared with MDBEM, the derived integral equation is very
simple in form and only requires integration once over the inter-
face elements. Attributed to the feature of being single integral
equation, it is easy to adopt the fast multi-pole method to solve

large-scale problems [41]. However, the formulations presented
in Ref. [34] can only solve linear steady heat conduction problems,
and only piece-wise homogeneous materials are analyzed in the
adopted numerical examples.

In this paper, a new single integral equation method is devel-
oped for solving general multi-medium transient heat conduction
problems. Firstly, the boundary-domain integral equation for sin-
gle medium non-homogeneous transient heat conduction is estab-
lished. Then from the established integral equation, the interface
integral equation for multi-medium transient heat conduction
problems is derived, by a degeneration technique from a domain
integral to an interface integral. The new formulation allows the
thermal material properties (i.e., the thermal conductivity, specific
heat and mass density) varying spatially within each medium, and
jump across the interfaces between two adjacent different media.
For the first time, a single integral equation method is employed
to solve multi-medium transient heat conduction problems with
variable material properties.

To solve the time-dependent system of differential equations,
the finite difference method (FDM) is used in the discretization
of time to approximate the time evolution of physical variables.
Based on an implicit backward differentiation scheme, an uncondi-
tionally stable and non-oscillatory time marching solution scheme
is developed for solving the normal time-dependent system of
equations, in which only temperature is involved as the time-
dependent unknown variable. Numerical examples are given to
verify the correctness of the presented method. The results show
that, the presented formulations are robust in solving transient
heat conduction in multi-medium functionally graded materials.

2. Review of boundary-domain integral equation for transient
heat conduction in single non-homogeneous medium

In the extensively used radial integration BEM for solving tran-
sient heat conduction in single medium [13], the thermal conduc-
tivity k is assumed to be a function of the spatial coordinates x, i.e.
kðxÞ. In this paper, not only the thermal conductivity, but also the
specific heat cp and mass density q are assumed to be functions of
x, i.e. kðxÞ, cpðxÞ, qðxÞ. In this case, the governing equation for tran-
sient heat conduction problems can be written as follows:

r½kðxÞrTðx; tÞ� þ QðxÞ ¼ qðxÞcpðxÞ @Tðx; tÞ
@t

ðt > t0; x 2 XÞ ð1Þ

where Tðx; tÞ is the temperature at location x at time t; QðxÞ is the
heat generation; t0 is the initial time, and X represents the compu-
tational domain.

The initial condition is

Tðx;0Þ ¼ T0ðxÞ ð2Þ
where T0ðxÞ is the initial temperature. On the boundary, Dirichlet
and Neumann boundary conditions are prescribed as follows:

Tðx; tÞ ¼ Tðx; tÞ; x 2 CT ð3Þ

qðx; tÞ ¼ �kðxÞ @Tðx; tÞ
@n

¼ qðx; tÞ; x 2 Cq ð4Þ

where qðx; tÞ is the normal heat flux on the boundary C of the com-
putational domain X; n is the unit outward normal to C; and
C ¼ CðCT [ CqÞ ¼ @X, CT \ Cq ¼ £. In Eqs. (3) and (4), Tðx; tÞ,
qðx; tÞ are the given temperature and heat flux on the boundary,
usually prescribed as given functions.

Taking the fundamental solution for the Laplace equation as
the weight function, applying the weighted residual technique
to Eq. (1), and using the Gauss’ divergence theorem, the
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