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a b s t r a c t

In this paper, a higher-order accuracy method is proposed for the solution of time-dependent nature con-
vection problems based on the stream function-vorticity form of Navier–Stokes equations, in which an
optimized third-order upwind compact scheme (Opt-UCD3) with high resolution is proposed to approx-
imate the nonlinear convective terms, the fourth-order symmetrical Padé compact scheme is utilized to
discretize the viscous terms, the fourth-order compact scheme on the nine-point 2D stencil is used for
approximating the stream-function Poisson-type equation and the third-order TVD Runge–Kutta method
is employed for the time discretization. To assess numerical capability of the newly proposed algorithm,
particularly its spatial behavior, a problem with analytical solution and another one with a steep gradient
are numerically solved. Moreover, the nature convection flows in the square cavity with adiabatic hori-
zontal walls and differentially heated vertical walls are also computed for the wide range of Rayleigh
numbers (103 < Ra < 1010). The characteristic parameters such as Nusselt number, velocity, and stream-
line show excellent agreement with benchmark solutions and some accurate results available in the lit-
erature. Additionally, the detailed features of flow phenomena for the higher Rayleigh numbers
(108 < Ra < 1010) are delineated. The results show that the natural convection flow looses stability firstly
via a Hopf bifurcation at Rac1 to the periodic flow regime, and then undergoes second bifurcation at a crit-
ical Rayleigh number Rac2 to quasi-periodic flow regime, and eventually transits to turbulent through a
further bifurcation. In the periodic regime, there exist at least two branches of solutions. All of the results
are agree well with ones in the literature and show the capabilities of the present method to properly
simulate the unsteady nature convection problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, natural convection flow in a square
cavity with differentially heated vertical walls and adiabatic hori-
zontal walls has been studied extensively due to its fundamental
importance in the understanding of buoyancy-driven flows and
its relevance to a wide range of engineering applications, such as
in cooling of nuclear reactors, air conditioning of rooms, cooling
of electronic equipment, crystal growing of liquids, solar energy
collector, etc. It has been a commonly studied problem of heat
transfer and fluid mechanics because of its numerical and experi-
mental accessibility and its simple geometry, and also has become
one of the most popular case for verifying new computer programs
and testing numerical algorithms developed to solve the Navier–
Stokes (NS) equations.

Following the pioneering work by Batchelor [1] and the popu-
larized contributions by De Vahl Davis and Jones [2] and the con-
tributors therein, many numerical methods, such as finite
difference (FD), finite volume (FV), finite element (FE) and lattice
Boltzmann methods, have been employed to calculate the steady,
laminar flow in a square cavity [3–20]. By using the second-order
finite difference scheme and combining the Richardson extrapola-
tion method, De Vahl Davis [3] presented the benchmark solutions
for the Rayleigh number up to 106; Hortmann et al. [4] also pre-
sented the benchmark solutions for Ra ¼ 104—106 using a FV
multigrid method on a fine non-uniform grid; Saitoh and Hirosel
[5] obtained a fourth-order FD method using conventional five-
point fourth-order approximations for the first and second deriva-
tives, and given the benchmark solutions for Ra ¼ 104 and 106;

Dennis and Hudson [6] developed a h4 compact nine-point FD
scheme and obtained higher accuracy results up to Ra ¼ 105. In
their work, the governing equations were discretized by the
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fourth-order compact FD schemes, but the derivative source term
was treated by the lower-order accurate scheme; Choo and Schultz
[7] developed a stable fourth-order FD method to solve the steady
state NS equations in the form of stream function-vorticity formu-
lation for Ra ¼ 103—106; Chen et al. [8] proposed a perturbational

h4 exponential FD scheme for the convective diffusion equation,
and given the accuracy results for the low Rayleigh numbers
Ra ¼ 103—105; Guo et al. [9] proposed a thermal lattice Boltzmann
equation for Ra ¼ 103—106; Wang et al. [10] presented a second-
order Euler–Taylor–Galerkin (ETG) FE method of fractional steps
and obtained the steady solutions for Ra ¼ 104 and 105. They
found out that the primary flow instability, a transition from diffu-
sive thermal conduction to a stationary time-independent steady
flow structure, occurs at the critical Rayleigh number
Ra ¼ 31304:5, and discussed the effect of the Prandtl number on
the first bifurcation; Cıbık and Kaya [11] and Benítez and Bermú-
dez [12] proposed a projection-based stabilization and a second
order characteristics FE methods, respectively, for solving steady
state natural convection problems for Rayleigh numbers up to
106 and 107; Zhang et al. [13] established a compact FD formula-
tion on nonuniform staggered grids based on the projection
method to solve the unsteady primitive variable NS equations,
and given the accuracy steady results for Ra ¼ 103—105 and dis-
cussed the process of the flow fields developing from the initial
condition of zero-roll pattern for Ra ¼ 105.

Efforts were also devoted to the problem at high Rayleigh num-
bers which have complicated convection patterns compared with
that at the low Rayleigh numbers. Le Quéré [14] presented the
benchmark solutions using a second-order Chebychev polynomial
approach and Nonino and Croce [15] developed an equal-order
velocity pressure FE algorithm for the Rayleigh number up to
108; Syrjälä [16] obtained the solutions using a higher-order Pen-
alty–Galerkin FE approach with 8897 elements for Ra ¼ 104—107;
Tian et al. [17,18] established their fourth-order compact FD
schemes for the two-dimensional (2D) steady governing equations
in the form of vorticity-stream function for Rayleigh numbers up to
107, and proposed a FD scheme based on a stream-function-
velocity formulation for Ra ¼ 103—108. Recently Dixit and Babu
[19] proposed a thermal lattice Boltzmannmethod to simulate nat-
ural convection in a square cavity for Rayleigh numbers
Ra ¼ 103—1010. For the reason that the unsteadiness of the flow
was not taken into account in their model, their results showed
nonnegligible discrepancy with reference ones at larger values of
Ra, although the results for small values were good agreement with
reference ones. Bucchignani [20] described an implicit unsteady FV
method for the solution of time-dependent NS equations written in
terms of vorticity and velocity and provided an accurate steady
solution on a fine stretched non-uniform grid at a high value of
the Rayleigh number Ra ¼ 108. Very recently Arpino et al. [21] pre-
sented the fully explicit matrix-inversion-free artificial compress-
ibility and characteristic based split (AC–CBS) algorithm,
obtained the solutions in detail the new for Ra ¼ 107 and 108,
and proposed a new benchmark solution for the steady-state lam-
inar natural convection with the higher Rayleigh numbers varying
from 1:24� 108 to 1:37� 108.

In contrast to numerical computations for lower and medium
Rayleigh numbers, only a few numerical studies have been per-
formed at very high Rayleigh numbers [22–27]. The flow structure
inside the cavity with very high Rayleigh numbers becomes very
complex, and the entire flow is divided into four domains, i.e., the
vertical boundary layers, corner regions, boundary layers adjacent
to the horizontal walls and the core region. For increasing Rayleigh
number, unsteadiness sets in at a critical Rayleigh number slightly

less than 2� 108 [22,23,26], and the steady flow bifurcates to an
unsteady periodic state and finally transforms to turbulent. Natural
convection in cavities with high Rayleigh number is still a challenge
issue because of the complex interaction between the boundary
layers and the core region and the essential coupling between the
transport properties of flow and thermal fields. For example, there
has not any definitive explanation of the origin of the primary
instability mechanism [27], the vertical boundary layer gets very
thin with the increasing of the Rayleigh numbers, and so on. As a
nonlinear coupled problem, the process of the nature convection
includes multi-scale structures and time dependent behaviors.
Even the numerical simulation of the nature convection in a simple
rectangular cavity also requires a great deal of computer efforts,
therefore it is important to establish efficient numerical method
with high accuracy and resolution for a wide range of Rayleigh
numbers and use it to study the heat transfer mechanisms espe-
cially for the sufficient large Rayleigh numbers. High-order compact
FD methods, which feature high accuracy, smaller stencils and rea-
sonable computational costs, are very popular in the computation
of fluid flows and/or heat transfer (see e.g., Refs. [8,13,17,31,32,37,
28–30] and therein). In the present paper, we construct a class of
at least third-order upwind compact FD schemes with free
parameter (FP-UCD) and propose an optimized third-order upwind
compact scheme (Opt-UCD3) based on the idea of Dispersion-
Relation-Preserving (DRP). Moreover, we propose a higher-order
accuracy compact FD algorithm to solve 2D unsteady NS equations
in the form of stream function-vorticity formulation governing the
fluid flow and heat transfer, and perform direct numerical simula-
tions of steady, unsteady and chaotical natural convection in a
air-filled square cavity with adiabatic horizontal walls for the Ray-
leigh numbers varying from 103 to 1010. In addition, the unsteady
features of the flow field are presented and the transition from lam-
inar to chaotic are discussed.

The present article is organized as follows. In Section 2 the prob-
lem, the governing equations and its non-dimensionalizations are
briefly recalled. The discretization of the stream function-
vorticity formulation and the energy equation are explained in
detail in Section 3. In Section 4 Fourier analysis and numerical
experiments are performed. The unsteady solutions of natural con-
vection are presented and discussed in Section 5. Some concluding
remarks are summarized in Section 6.

2. The problem

2.1. Description of the problem

As shown in Fig. 1, the problem being solved is an incompress-
ible Boussinesq flow filling in a 2D square cavity of width H. The
homogeneous gravitational field, g ¼ �gey, is taken positive down-
ward. In the present study, both horizontal walls are thermally
insulated, while the vertical walls are isothermal, and the constant
temperature of left wall hh is hotter than that of right wall hc. When
the temperature difference Dh ¼ hh � hc between the two vertical
walls exceeds a certain threshold value, natural convective motion
sets in.

2.2. Governing equations

The fluid is modeled as Boussinesq fluid whose density assumed
to depend linearly on temperature h, as

q ¼ q0½1� bðh� h0Þ�: ð1Þ
where q0 is the fluid density at the reference temperature h0, and b
is the thermal expansion coefficients. The flow is described by the
continuity momentum and energy equations in a Cartesian coordi-
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