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a  b  s  t  r  a  c  t

Frequency  response  analysis  (FRA)  is a widely-used  method  to detect  axial  displacement  (AD)  and  radial
deformation  (RD)  in  windings  of  power  transformers,  because  of  its high  sensitivity  to  small  amount  of
mechanical  defects.  Interpretation  of frequency  response  curves  has  been  the most  intricate  problem  of
FRA  method.  To  solve  it,  different  numerical  indices  have  been  introduced  by  researchers  to  evaluate  the
frequency  response  of power  transformers,  but (1)  the  researchers  have  not  discussed  on  genesis  origin
of the  proposed  indices  and  (2)  most  of  these  indices  can not  present  a regular  and  linear  behavior.  In
this paper,  a  probabilistic  feature  has  been  utilized  to demonstrate  how  an efficient  index  originates,  to
diagnosis  axial  displacement  and  radial  deformation  in  windings  of  power  transformers.  The  resulted
index  presents  a nearly  linear  mapping  between  frequency  response  curves  and  their  related  defect
extent.  To  verify  usefulness  of  this  index,  it has  been  applied  to several  sets  of  measured  frequency
response  curves.  It is illustrated  that  the  extracted  index  is  able  to  determine  extent  of  the defects.  To
discriminate  between  axial  displacement  and  radial  deformation,  local  behavior  of TF  curves  has  been
used.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Power transformers belong to the most expensive and most
important equipments in electrical power transmission and dis-
tribution systems. Failure of a power transformer is a very costly
event and cause reduction of the power system reliability and
interruption of power supply [1,2]. Failures and their location in
transformers are reported in [3] as follows; on-load tap changers
(41%), winding (19%), tank/fluid (13%), terminal (12%), accessories
(12%) and core (3%). Minor mechanical defects in windings are
hard to detect in power transformers but they may  lead to sud-
den and severe faults. High short-circuit currents and improper
transportation are well-known causes of these defects. There is
no reliable statistics about percentage for causes of mechanical
defects in power transformer windings because different factors
that cause a mechanical failure are not independent from each
other. For example, usual short-circuit currents can not distort
windings if there is not an incipient asymmetry in windings due
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to improper transportation, reduction in clamping pressure, insu-
lation aging and so on. Such deformations do not necessarily lead
to an immediate failure of transformer, but its ability to withstand
future mechanical and dielectric stresses may be strongly reduced
[4,5]. A reliable detection of mechanical failures in power trans-
formers, due to winding displacement and deformation, requires
the implementation of a sensitive method for the detection of this
type of damage without opening the unit [4]. FRA, also called TF,
method that was introduced by Dick and Erven in [6], is the most
sensitive and widely used method for this purpose [4]. Practical
experiences, as well as scientific investigations, show that cur-
rently no other diagnostic test method can deliver such a wide
range of reliable information about the mechanical status of a trans-
former’s active part (core-coil assembly) [7]. TF method is based on
the concept that changes in the windings due to deformation and
displacement cause changes in the parameters of the transformer
(capacitances, inductances. . .)  and consequently a modification of
its TF [4]. Based on a set of TF traces (mainly the amplitude shown
over the frequency), an evaluation of the transformer’s mechanical
condition can be made. Although FRA is emerging as a powerful
diagnostics technique, there is still no general guideline for inter-
preting resultant TFs. In test fields, the evaluation is presently done
by experts in the topic through the visual inspection of TF traces.
In some cases two experts’ opinion may differ considerably. On
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the other hand, some manufacturing industries use their own  pro-
cedure. Organizations such as IEEE and CIGRE are attempting to
develop standards, guidelines and tests for TF method on trans-
formers [7]. The most important methods, proposed so far for the
interpretation of FRA results, can be classified in three categories,
as follows:

(I) Using an Equivalent Circuit.  These equivalent circuits consider
the behavior of the core and windings as a function of the
frequency [4], [8–11].

(II) Using Mathematical Models.  In these methods the TF is consid-
ered as a rational function with real coefficients [12,13].

(III) Using Numerical Indices.  In literature, different deterministic
and statistical numerical indices have been used for TF Inter-
pretation [14], namely: correlation coefficient (CC) [15,16],
spectrum deviation (SD) [16] and maximum absolute differ-
ence (DABS). Other parameters such as sum squared error
(SSE), sum squared ratio error (SSRE), sum square max–min
ratio Error (SSMMRE) and absolute sum of logarithmic error
(ASLE) [17] were proposed by the authors in order to improve
the interpretation of TF results [4].

The numerical indices preferred to use in transformer industry
because they are straightforward and easy to implement in compar-
ison to the other above-mentioned methods. The numerical indices
act as mapping from the space of the transfer function to the space
of the defect extent. In spite of their usefulness, they suffer from
following two disadvantages:

(1) The researchers have not discussed on genesis origin of the
proposed indices.

(2) Most of these indices can not present a regular and linear behav-
ior.

In the subsequent sections, a probabilistic reasoning will be used
to illustrate how a useful index can be extracted to diagnose axial
displacement and radial deformation in windings of power trans-
formers. The linearity of obtained index will be compared to other
useful indices.

2. Probabilistic classification

The TF evaluation may  be considered as a probabilistic clas-
sification problem in order to determine the type and extent of
mechanical defects in power transformers. Any degree of defect
may  be treated as a class of defect. Then, a probabilistic classifier
should be designed in order to classify an unknown TF curve, named
TFx, in the most probable class of k defect classes. It is assumed that
the number of classes, k, is known. Each TF curve is uniquely rep-
resented by a single vector that contains amplitudes of measured
points and it belongs to only one class of defect. Given TFx and a set
of k classes, i.e., di; i = 1, 2,.  . . k, the bayes theory [18] states that:

P(di|TFx) = p(TFx|di)P(di)
p(TFx)

(1)

where P(di) is the priori probability of class di and p(TFx) is the
probability density function (pdf) of TFx, expressed by the following
equation:

p(TFx) =
k∑

i=1

p(TFx|di)P(di) (2)

The bayes classification rule can now be written, as follows:

TFx is classified to dj if P(dj|TFx) > P(di|TFx), ∀i /= j (3)

p(TFx) is not taken into account, because it is the same for all classes
and it does not affect the final decision [18]. Furthermore, if the
priori probabilities are equal, (3) becomes:

TFx is classified to dj if p(TFx|dj) > p(TFx|di), ∀i /= j (4)

where P(di|TFx) is the posteriori probability of class di given the
value of TFx. p(TFx|di), is the class conditional pdf of TFx given di
(sometimes called the likelihood of di with respect to TFx) [19].

Instead of working directly with probabilities, it may  be more
convenient, from a mathematical point of view, to work with
an equivalent function of them, for example, hi(TFx) = f(p(di|TFx)),
where f(·) is a monotonically increasing function. hi(TFx) is known
as a discriminant function [18]. The decision test, i.e., (4), is now
rewritten, as follows:

classify TFx in dj if hj(TFx) > hi(TFx) ∀i /= j (5)

The central limit theorem states that the pdf of the sum of a
number of statistically independent random variables tends to the
gaussian one as the number of summands tends to infinity [20]. In
practice, this is approximately true for a large enough number of
summands. This is the case we confront in this investigation. The
multidimensional gaussian pdf in the n-dimensional space has the
following form:

p(TFx) = 1

(2�)n/2|S|1/2
e(−1/2(TFx−m)T S−1(TFx−m)) (6)

where m is the mean vector (representative of the defect class), S
is the covariance matrix defined by S = E[(TFx − m)(TFx − m)T] and
|S| is the determinant of S. Because of the exponential form of the
involved densities, it is preferable to work with the following dis-
criminant functions, which involve the (monotonic) logarithmic
function, ln(·):
hi(TFx) = ln(p(TFx|di)p(di)) = ln p(TFx|di) + ln P(di) (7)

or

hi(TFx) = −1
2

(TFx − m)T S−1
i

(TFx − m)  + ln P(di)

−
(

n

2

)
ln2� −

(
1
2

)
ln|S| (8)

If we  now assume that the covariance matrix is the same in all
classes, i.e., Si = S, and neglecting constant terms, then we have:

hi(TFx) = −1
2

(TFx − m)T S−1(TFx − m)  (9)

The Eq. (9) presents a well-known mathematical distance
function called mahalanobis distance. The key point is that a prob-
abilistic classifier leads to a distance function. If the covariance
matrix is the identity matrix, the Mahalanobis distance reduces to
the Euclidean Distance (ED) function [18]. It must be stated that the
Euclidean Distance function is often used instead of mahalanobis
distance, because of its simplicity, even if we  know that the previ-
ously stated assumptions are not valid [19]. The Euclidean Distance
or Euclidean metric is the distance between two points in Euclidean
space. The Euclidean Distance between TFx and TFi is defined, as
follows [19]:

EDi = ||TFx − TFi|| =
√

(TFx − TFi)
T (TFx − TFi) (10)

where TFi = [li1,li2. . .lin], TFx = [lx1,lx2. . .lxn] and T stands for trans-
pose of the vector. j-th belongs to j-th class of defect if:

EDj < EDi, ∀i /= j (11)

It assigns an unknown TF curve to the class whose representative
is closest to it with respect to the Euclidean norm.
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