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a b s t r a c t

Heat transport in Guyer–Krumhansl model is studied and analytical solutions for the proper one-
dimensional differential equation are explored by the operational method. Exact analytical solution is
demonstrated. With its help sudden heat surge propagation is analytically described and compared with
the solution for gradual heat wave propagation. The example of the application of the study to the heat
transport in ultra-thin films is given. Influence of the Knudsen number on heat transport for short pulses
and for gradual heat waves is demonstrated. The negativity and the maximum principle violation for the
obtained solutions are discussed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fourier’s law of heat conduction [1], which relates linearly the
temperature gradient to the heat flux, is one of the most common
laws in continuum physics; it provides excellent agreement
between theory and experiment for more than 90% of the cases.
It is undoubtedly the best model for heat conduction in
undeformable solids. However, due to its shortcomings, noted by
Onsager in 1931 [2], the Fourier’s model ‘‘can be viewed only as
an approximation of the heat conduction, which neglects the time
needed for acceleration of the heat flow”. The most important
related phenomenon is the second sound [3]. It was observed also
in solid crystals via properly designed experiments [4–7] with
the heat pulse technology. To address the second sound
phenomenon, Cattaneo [8] proposed the following simple equa-
tion: ðs@2

t þ @tÞT ¼ DTr2T , in which temperature disturbance prop-
agates like damped waves, DT is the heat conductivity and s is the
relaxation time. The ratio v t ¼

ffiffiffiffiffiffiffiffiffiffiffi
DT=s

p
is a velocity like quantity,

representing the speed of the heat wave in the medium, which
characterises the thermal wave propagation the same way as the
diffusion behaviour is characterised by the diffusivity. The model
supposes that the heat flow does not start instantaneously after a
temperature gradient was imposed at the boundary of the domain,
but is delayed by a relaxation time s after the application of the

temperature gradient. The parameter s is the intrinsic thermal
material property, which gives a lag between the change of the
temperature gradient and the respective reaction of the heat flow
on it. It is associated with the linkage time of phonon–phonon col-
lision, necessary for the initiation of a heat flow and is a measure of
the thermal inertia of the medium. With the additional constant
term Cattaneo’s equation turns into telegraph equation. Despite
relative success of Cattaneo’s relation in description of the second
sound, predicted finite value for the heat wave velocity

ffiffiffiffiffiffiffiffiffiffiffi
DT=s

p
disagrees with the observed experimental data and it does not
describe heat pulse propagation in non-metallic very pure crystals,
like Bi or Na F at very low temperature. Some physical contradic-
tions, related to Cattaneo’s equation, were described, for example,
in [9,10] and mathematical contradictions were evidenced, for
example, in [11–13]. Importantly, it was shown that the telegraph
equation did not preserve the non-negativity of its solutions and
that the maximum principle was not valid even for the
one-dimensional hyperbolic heat space.

The most popular and discussed improvement of Cattaneo’s
relation, is, perhaps, due to Guyer and Krumhansl (GK) [14], who
solved the linearised Boltzmann equation for a phonon field in
dielectric crystals at low temperature and derived a non-local
extension of Cattaneo’s equation. In what follows we will explore
its analytical solution and check whether it preserves the maxi-
mum principle and non-negativity of solutions. In its turn the
Guyer–Krumhansl equation can be viewed as particular case of a
more general heat conduction equation, derived in [15].
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2. Exact analytical bounded solution of Guyer–Krumhansl
equation

Guyer–Krumhansl equation in one dimension is typically writ-
ten as follows [16]:

@2

@t2
þ e

@

@t
� d

@3

@t @x2

 !
Fðx; tÞ ¼ a

@2

@x2
þ j2

 !
Fðx; tÞ;

a; e; d; j ¼ const ð1Þ
with j = 0. However, we will keep the constant source term j2 for
more generality. Its interpretation might be the radiation into the
environment with small difference temperature or another kind of
heat source; its mathematical role will be explored in what follows.
Parameters a; e; d must be nonnegative according to the Second
Law. When bulk phonon mean free paths l are comparable with
the structure scale L, for example, in one-dimensional thin film or
wire, which thickness may be of the same order of magnitude as,
or even smaller than the mean free path of the phonons [17,18],
neither Casimir phonon [19] nor Fourier diffusion [1] theories are
accurate and thermal transfer is influenced by both internal and
boundary scattering. In this case ballistic transport plays significant
role; it was observed in ultra-thin films, nanowires and other quasi
one-dimensional structures and it is currently in focus of research
[20–29]. However, GK equation is not limited to the description of
the above mentioned physical phenomenon. Indeed, it was demon-
strated that heat propagation at room temperature also obeys GK
relation. Experimental results for such measurements with heat
pulse are published in [27]. In this context we would like to note
that the ballistic transport, being the free propagation of phonons
(when it is applicable), is not the sole phenomenon, related to GK
equation. Since GK type heat conduction was measured in room
temperature and in porous and composite materials, where the
kinetic pictures cannot work, it would be more correct to call the
regime, when d > a=e — over-diffusive transport, following Tang
and Araki [28]. If d ¼ a=e, the solution is pure Fourier (see Figs. 2
and 4 in what follows). Eq (1) can be conveniently written in terms
of heat conductivities as follows:

s @2

@t2
þ @

@t

 !
Fðx; tÞ ¼ kb

@3

@t@x2
þ kT

@2

@x2
þ l

 !
Fðx; tÞ; ð2Þ

where kb ¼ d=e; s ¼ 1=e; l ¼ j2=e; kT ¼ a=e is the heat diffusivity.
Following the request of researchers we derived bounded analytical
solution for Eq. (1) with the initial function f ðxÞ [30], employing the
operational method [31–34] and Laplace transforms, as follows:

Fðx; tÞ ¼ e�
t
2et

4p

Z 1

0

dn
n
ffiffiffi
n

p e�
t2
16n�nðe2þ4j2Þ

Z 1

�1
e�f2 Ŝf ðxÞdf; ð3Þ

where

Ŝ ¼ em@
2
x ; m ¼ aþ ibf; a ¼ td=2� 4naþ 2ned; b ¼ 2

ffiffiffi
n

p
d: ð4Þ

The heat operator Ŝ is the solution of Fourier heat equation:

@tFFouðx; tÞ ¼ a @2
xFFouðx; tÞ ð5Þ

and its action can be obtained via Gauss transforms [31,35]:

FFouðx; tÞ � expðat@2
x Þf ðxÞ

¼ 1
2
ffiffiffiffiffiffiffiffiffi
pta

p
Z 1

�1
exp �ðx� nÞ2

4ta

( )
f ðnÞdn: ð6Þ

Analytical solutions for several types of initial functions, such as
f ðxÞ ¼ xn; f ðxÞ ¼ xnec x; f ðxÞ ¼ dðxÞ were obtained earlier in [30]. For
example, for the initial monomial Fðx;0Þ ¼ xn in GK equation the
following solution arises:

Fðx; tÞjf ðxÞ¼xn ¼
e�

t
2et

4p

Z 1

0

dn
n
ffiffiffi
n

p e�
t2
16n�nðe2þ4j2Þ

�
Z 1

�1
e�f2Hnðx; aþ 2idf

ffiffiffi
n

p
Þdf; ð7Þ

where Hnðx; yÞ are Hermite polynomials of two variables [36,37]:

Hnðx; yÞ ¼ exp y
@2

@x2

 !
xn ¼ n!

X½n=2�
r¼0

xn�2ryr

ðn� 2rÞ!r! ;

X1
n¼0

tn

n!
Hnðx; yÞ ¼ expðxt þ yt2Þ: ð8Þ

The integration in (7) with account for the sum presentation (8)
can be easily accomplished. For instance, for f ðxÞ ¼ x2 it yields the
following simple solution:

Fðx; tÞjf ðxÞ¼x2 ¼ e�
t
2ð
ffiffiffi
V

p
þeÞ x2 þ tdþ tffiffiffiffi

V
p ðde� 2aÞ

� �
; V ¼ e2 þ 4j2:

ð9Þ
Similarly we can obtain the solution for any given n.
Modelling experimental data by analytical functions frequently

employs expansions in Fourier series. On the other hand, it is well-
known that Fourier heat diffusion is not always applicable for
describing heat transport at short wave lengths. By these reasons
we give the analytical solution of GK equation for the initial har-

monic function f ðxÞ ¼ expðinxÞ. The action of the heat operator Ŝ

transforms it: Ŝeinx ¼ em @
2
x einx ¼ einx�n2m ¼ einx�n2ðdt=2�4naþ2nedþ2if

ffiffi
n

p
dÞ,

and yields the following bounded solution of the GK equation (1)
and (2):

Fðx; tÞ ¼ einx
e�

t
2ðeþn2dÞt
4p

Z 1

0

dn
n
ffiffiffi
n

p e�
t2
16n�nðe2þ4j2þ2n2ð�2aþedÞÞ

Z 1

�1
e�f2e�icfdf;

c ¼ 2n2d
ffiffiffi
n

p
:

ð10Þ
Straightforward integration results in the following solution for

f ðxÞ ¼ expðinxÞ (see [30]):

Fðx; tÞjf ðxÞ¼expðinxÞ ¼ exp inx� t
2
ð�eþ

ffiffiffiffi
U

p
Þ

� �
;

�e ¼ eþ n2d; U ¼ �e2 þ 4ðj2 � an2Þ:
ð11Þ

Interestingly, the solution (11) of GK type equation (1) with ini-
tial harmonic function f ðxÞ ¼ expðinxÞ is also the solution for the
telegraph equation:

@2

@t2
þ �e

@

@t

 !
Fðx; tÞ ¼ a

@2

@x2
þ j2

 !
Fðx; tÞ; ð12Þ

where the coefficient of the first order time derivative depends on
the harmonic number: �e ¼ eþ n2d. Therefore, for the initial func-
tion, expandable in Fourier series uðxÞ ¼Pncn expðinxÞ, the solu-
tions of Eqs. (1) and (12) for the same set of a; e; j; d are
identical: U ¼PncnFðx; tÞ, where Fðx; tÞ is given by (11). Then, in
certain sense, GK equation for the harmonic initial function can
be viewed as Cattaneo’s equation with harmonic dependent coeffi-
cient of @=@t : ðeþ n2dÞ@=@t.

In what follows we shall consider few other examples of initial
functions and analyze the behaviour of the respective solutions.
Basically, they consist in the integrated weighted action of heat dif-

fusion operator Ŝ on the initial functions. The heat pulse technique
is common for the heat conductivity measurements (see, for exam-
ple, [38]). Heat pulses may have different shapes and lengths;
unfortunately, experimental results not always account for this
factor [39]. In what follows we will compare the evolution of the
initial function in the form of the instant and point heat pulse,
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