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a b s t r a c t

Pavement surface temperature is critical to the pavement performance and the development of cool
pavements. The variations of the pavement surface temperature have been documented in numerous
empirical models. These models, however, exclude critical parameters like albedo and thermal inertia
but include many empirical parameters that have no thermo-physical meanings. This study presents a
theoretical model to predict the surface temperature of pavements and validates it against field data
and numerical results from the existing studies. It is found that the amplitude, maximum, and minimum
of the pavement surface temperature increase linearly with the pavement surface absorptivity, the daily-
zenith incident solar irradiation, and the reciprocal thermal inertia. Among these, raising the pavement
albedo is more effective to reduce the pavement surface temperature than increasing the pavement ther-
mal inertia. The model has practical meanings to predicting the maximum, minimum, and amplitude of
the pavement surface temperature and to developing cool pavements.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The pavement temperature is critical to the distresses of the
pavement [1,2] and to the formation of the urban heat island
[3,4]. A high daily temperature amplitude developed in a rigid
pavement causes structural defects such as warping and curing
[2,5–7]. A high-level surface temperature in an asphalt pavement,
for instance, increases the risk of rutting [8,9]. In an urban area, a
hot pavement releases a great amount of sensible heat to the ambi-
ent air and thus aggravates the urban heat island effect [10–12].
Predicting the variation of the surface temperature of a pavement
is thus important for estimating the pavement performance and
the urban thermal environment.

The amplitude and maximum of the surface temperature of
pavements have gained numerous studies. Numerical and empiri-
cal models have been contributed to predict the pavement temper-
ature development and to estimate the variation of the pavement
surface temperature [13–24]. These models include the enhanced
integrated climatic model [24], the long-term pavement perfor-
mance model [23], as well as other empirical models [19–22]. In
these models, the variations of the pavement surface temperature
are deemed as a function of the local air temperature, the pave-

ment depth, the latitude, and other regressed empirical coeffi-
cients. Arguments adopted in these models include the air
temperature and the latitude but exclude solar irradiation. Exclud-
ing the solar irradiation in these models is unreasonable because
solar radiation is the driving force for the variation of the subsur-
face temperature. In addition, these models fail to include the
pavement thermal properties, e.g., thermal conductivity and volu-
metric heat capacity, resulting in inaccurate predictions to a real
pavement using these models.

This study presents a theoreticalmodel to predict themaximum,
minimum, and amplitude of the pavement surface temperature. The
model incorporates the pavement thermal properties, the surface
albedo, and the daily-zenith incident solar irradiation. The model
is validated against field data and against an extensive numerical
model that is verified by observation data. The discussion is made
with a focus on the use of the proposed model to predict the annual
maximum surface temperature of a pavement and on the implica-
tions on the development of reflective cool pavements.

2. Methods

2.1. Heat balance at the pavement surface

The temperature variation of the earth’s subsurface is driven by
the solar radiation. A portion of the solar radiation is reflected back
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into the sky, which is proportional to the surface albedo, R. The
remaining is absorbed and partitioned into conduction G (W/m2),
convection H (W/m2), long-wave emission L (W/m2), and evapora-
tion E (W/m2). On a dry pavement surface, the heat balance obeys
Eq. (1):

ð1� RÞI ¼ Gþ H þ L ð1Þ
where I (W/m2) is the incident solar irradiation. These factors can be
further refined to:

ð1� RÞI ¼ �k
@T
@z

����
z¼0

þ hcðTs � TaÞ þ erðT4
s � T4

skyÞ ð2Þ

where T, Ts, Ta, and Tsky (K) are the temperatures of the ground, the
surface, the air, and the sky, respectively; and k (W/(m K)) is the
thermal conductivity of the pavement layers; z (m) is the vertical
coordinate that starts from the pavement surface with positive
being downward; hc (W/(m2 K)) is heat convection coefficient; e is
the surface emissivity and r is the Stefan-Boltzmann constant,
5.67 � 10�8 Wm�2 K�4.

The heat transfer between a pavement and its underlying layers
can be treated as a one-dimensional transient heat transfer in a
semi-infinite body obeying Eq. (3):

cq
@T
@t

¼ k
@2T
@z2

ð3Þ

where c (J/K) and q (kg/m3) are the specific capacity and density of
the ground, respectively;

Solving Eq. (3) thus needs the heat flux at the pavement surface,
which can be estimated from the residual of the solar absorption,
the long-wave emission, and the heat convection. The incident
solar radiation I follows approximately a sinusoidal wave, with a
peak at solar noon and zero at nighttime.

I ¼ I0 cosðxt �usÞ; tsr < t < tss
0 t 6 tsr or t P tss

�
ð4Þ

where tsr (hr) and tss (hr) are the sunrise and sunset time; us (rad) is
the phase of the incident solar irradiation and it is p for the local
solar time.

The heat convection, hc (Ts�Ta), is proportional to the difference
between the air temperature and the pavement surface tempera-
ture. The pavement surface temperature, Ts, is inquired by numer-
ical iterations. The air temperature, Ta, can be found from the local
weather data. The following empirical formula can provide a rea-
sonable accuracy for hc [15,25]

hc ¼
5:6þ 4:0v v < 5
7:2þ v0:78 v P 5

�
ð5Þ

where v (m/s) is the wind speed measured at height of 9.0 m.
The net long-wave emission, L, is the third term at the right-

hard side of Eq. (2), where the sky temperature can be estimated:

Tsky ¼ e0:25sky Ta ð6Þ
where the sky emissivity esky:

esky ¼ 0:754þ 0:0044Td ð7Þ
where Td (�C) is the dew point:

Td ¼ bc=ða� cÞ
where a = 17.3, b = 237.7, and c ¼ aTa=ðbþ TaÞ þ lnðRH=100Þ (here
Ta in �C) [26].

2.2. Analytic solution to the pavement temperature

Although the daily surface temperature of a pavement varies
over time, the variation approximately follows sinusoidal waves.

For a clean day, one sinusoidal function is sufficient for a reason-
able accuracy [27], while for a hot summer day, two sinusoidal
functions may be required to improve the accuracy [28–30]. Con-
sidering that the yearly temperature variation also follows a sinu-
soidal wave [31], the surface temperature can be modeled by Eq.
(8):

TsðtÞ ¼ Ad cosðxt �udÞ þ Ahcosð2xt �uhÞ
þ Aycos

x
365

t �uy

� �
ð8Þ

where x (rad) is the angular frequency, x = 2p/(24 � 3600); ud, uh

and uy are the phases (in rad) of a day, a half day, and a year; Ad (�C),
Ah (�C), and Ay (�C) are the temperature amplitudes of a day, a half
day, and a year, respectively.

Considering a negligible heat flux from the deeper ground and
assuming the pavement and its underlying layers are uniform,
one gets the analytic solution of a pavement temperature by sub-
stituting Eq. (8) to Eq. (3):

Tðz; tÞ ¼ Ade�k1zcosðxt � k1z�udÞ þ Ahe�k2zcosð2xt � k2z�uhÞ
þ Aye�k1zcosðxt=365� k3z�uyÞ ð9Þ

where k1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2a

p
; k2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x=2a
p

; k3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=ð2� 365aÞp

and
a = k/cq (m2/s) is the thermal diffusivity.

Taking the partial derivative of T(z,t) with respect to z at z = 0
and noting cosu�sinu =

ffiffiffi
2

p
cos(u + p/4), one gets

G ¼ AdP
ffiffiffiffiffi
x

p
cos xt �ud þ

p
4

� �
þ
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4
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þ 0:0523PAy
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x
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t �uy þ
p
4

� �
ð10Þ

where 0:0523 ¼ 1=
ffiffiffiffiffiffiffiffiffi
365

p
and P ¼

ffiffiffiffiffiffiffiffi
kcq

p
is the thermal inertia of the

pavement
In Eq. (10), the diurnal temperature amplitude is the primary

oscillation while the other terms are relatively small because the
amplitudes of Fourier series decay exponentially. For simplicity,
G can be set as

G ¼ G0 cos xt �ud þ
p
4

� �
þ C ð11Þ

where G0 (W/m2) is the amplitude of the thermal conduction, C (W/
m2) is a regressed constant for the summation of the last two terms
at the right-hand side of Eq. (10). Comparing Eq. (11) with Eq. (10),
one gets:

Ad ¼ Go

P
ffiffiffiffiffi
x

p þ A0 ð12Þ

where A0 (�C) is a regressed constant characterizing both the devi-
ation of G from the sinusoidal wave and the seasonal energy stor-
age. It may be a function of the air temperature, the air relative
humidity and the surface emissivity.

Eq. (12) correlates the variation of the pavement surface tem-
perature to the amplitude of the thermal conduction. In practice,
the conduction is hard to be known but the solar absorption is
measurable. So, it is advisable to replace the thermal conduction
with the solar absorption. According to the hysteresis effect of
the energy budget at the ground surface, the thermal conduction
G obeys [12,32,33]

G ¼ a1Rn þ a2
@Rn

@t
þ a3 ð13Þ

where a1, a2 (hr) and a3 (W/m2) are regressed constants. a1 stands
for the ratio of the net radiation to the thermal conduction. a2 is
the hysteresis of the surface energy storage; Rn is the net all-wave
radiation:

Rn ¼ ð1� RÞI � L ð14Þ
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