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a b s t r a c t

This paper extends the hybrid computational method proposed by Docherty et al. (2014) for simulating
non-isothermal rarefied gas flows at the microscale. Coupling a continuum fluid description to a direct
simulation Monte Carlo (DSMC) solver, the original methodology considered the transfer of heat only,
with validation performed on 1D micro Fourier flow. Here, the coupling strategy is extended to consider
the transport of mass, momentum, and heat, and validation in 1D is performed on the high-speed micro
Couette flow problem. Sufficient micro resolution in the hybrid method enables good agreement with an
equivalent pure DSMC simulation, but the method offers no computational speed-up for this 1D problem.
However, considerable speed-up is achieved for a 2D problem: gas flowing through a microscale crack is
modelled as a microchannel with a high-aspect-ratio cross-section. With a temperature difference
imposed between the walls of the cross-section, the hybrid method predicts the velocity and temperature
variation over the cross-section very accurately; an accurate mass flow rate prediction is also obtained.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The behaviour of fluid flows through and around micro- and
nano-scale devices is still not well understood; traditional contin-
uum fluid mechanics is often inaccurate due to the importance of
the fluid’s molecular nature at these scales. Deterministic molecu-
lar dynamics (MD) may be employed to model liquid flows at the
nano-scale, while the stochastic direct simulation Monte Carlo
(DSMC) method is the most popular computational tool for dilute
gases at the micro- or nano-scale. Both of these techniques are,
however, too computationally intense to resolve the spatial and
temporal scales in real engineering flow problems. The DSMC
method is significantly cheaper than MD, but the expense of track-
ing and computing collisions between thousands/millions of DSMC
particles can require months (or even years) of computing time.
Therefore, continuum-molecular ‘hybrid’ methods are being
developed to reduce this expense. Hybrid methods combine the
efficiency of a continuum-fluid description with the resolution
and accuracy of a molecular treatment: the molecular tool is
applied over micro/nano scales to resolve the molecular flow
behaviour, while the continuum-fluid description is employed over
macro scales to resolve macroscopic flow variations.

The majority of current continuum-molecular hybrid methods
are based on a domain decomposition (DD) framework [2–6],
where the molecular solver is applied in a ‘micro’ sub-domain
(which is typically close to a bounding wall) and the continuum-
fluid solver is applied in the remaining ‘macro’ sub-domain; an
overlap region then enables coupling of the two solvers, as
illustrated in Fig. 1(a). These DD methods are, however, limited
to flow problems where microscopic resolution is required only
in localised regions. The less common ‘equation-free’ [7] and
‘heterogeneous’ [8] multiscale approaches are able to simulate
problems that require the molecular solver to provide information
to the continuum solver everywhere in the flow, i.e. when the
conventional linear fluid-constitutive relations fail in the bulk of
a flowfield — this could be the case if non-equilibrium flow appears
in the bulk, or if the transport properties are unknown in an
unusual gas mixture. In this case, a continuum-fluid description
is applied across the entire flowfield, and spatially-distributed
micro elements (in which the molecular solver is implemented)
are then deployed to ‘correct’ this continuum description.

The Heterogeneous Multiscale Method (HMM) [8] uses a
‘point-wise coupling’ approach, illustrated in Fig. 1(b). The micro
elements supply information (consisting of updated boundary
conditions and fluid-constitutive information) directly to the nodes
of the macro grid, both at the bounding walls and in the bulk. At
the same time, each micro element is constrained by the local
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continuum solution at the collocated macro node. This point-wise
coupling means that the position and size of the micro elements is
restricted by the placement and density of the macro nodes.
It also means that, while the HMM is effective when the spatial
scales are highly separated (i.e. when the variation of the flow
properties relative to the physical extent of a micro element is
small), it is inefficient and potentially inaccurate for flow problems
that exhibit mixed degrees of spatial scale separation.

To overcome the restrictions of point-wise coupling, the HMM
with field-wise coupling (HMM-FWC) was proposed by Borg
et al. [9], which builds on the equation-free [7] and heterogeneous
[8] multiscale frameworks. A continuum description is again
applied over the entire flowfield, but each micro element now
represents a field that correlates directly with an identically-
sized continuum sub-region. The coupling is then performed via
fields rather than nodal points: the local continuum property fields
are imposed over the micro elements, and local constitutive
correction fields (i.e. corrections to properties derived from linear
constitutive-fluid relations) are extracted1; these local corrections
are then interpolated to provide global corrections across the entire
flowfield. Essentially, the HMM-FWC takes advantage of the fact that
properties like stress and heat flux (and hence their corrections)
often vary slowly in space, and so computational savings can be
made by interpolating these fields between micro elements that
are more sparsely located than the macro nodes. As in the HMM,
near-wall micro elements also provide the continuum-fluid
description with updated boundary information. The HMM-FWC
can be considered a more general heterogeneous approach than
the HMM — the position and size of the micro elements is not

restricted by the macro nodes, as indicated in Fig. 1(c), and flows
with mixed degrees of spatial scale separation can be simulated
efficiently.

A specific class of the HMM-FWC has recently been developed
to simulate efficiently the flow through long micro/nanochannels,
which are a fairly common feature of emerging micro and nano
devices. Presented by Borg et al. [10], the framework and coupling
strategy of the Internal-flow Multiscale Method (IMM) is tailored
to exploit the large length scale separation that exists in the
streamwise direction of these flows. A continuum-fluid descrip-
tion is applied over the entire channel, and very short micro
elements occupying the entire cross-section (i.e. the full channel
height in 2D problems) are distributed along the channel length,
as shown in Fig. 1(d). Compared with the other heterogeneous
methods, the coupling is simplified — pressure gradients are
imposed over the periodic micro elements via body-forcing,
and the resulting mass flux is used to correct the continuum
description.

Both the HMM-FWC and the IMM were originally implemented
using MD as the micro solver for the simulation of liquids, and with
assumptions of incompressible and isothermal flow. The IMM has
seen significant development since: it has been implemented for
a continuum–DSMC coupling [11,12], and extended to compress-
ible [11], non-isothermal [12], and unsteady flows [13]. Note, how-
ever, that the non-isothermal coupling strategy in [12] is not
general, and is applicable only to the long micro/nanochannel
flows tackled by the IMM.

In 2014, Docherty et al. [1] adapted the HMM-FWC for a contin-
uum–DSMC coupling, tailoring the constraint of the micro ele-
ments to suit the use of a DSMC solver. The focus was on heat
transfer problems, and non-isothermal coupling was achieved via
the conservation of energy. However, this coupling strategy limited
the method to ‘stationary’ heat transfer problems, i.e. where the

Nomenclature

a acceleration
d molecular diameter
e specific energy
f external body force per unit volume
G number of DSMC time-steps
H separation between bounding walls
Hlower=bulk=upper vertical extents of micro elements
I number of iterations
Kn Knudsen number
l characteristic dimension
Mx number of macro nodes
Ma Mach number
_m mass flow rate
p pressure
q heat flux vector
S computational speed-up
T temperature
tcl average clock time per DSMC time step
u gas velocity
u; v; w gas velocity spatial components
W separation between bounding walls, or the channel

width
W left=bulk=right horizontal extents of micro elements

Greek symbols
Dx horizontal macro node spacing
Dy vertical macro node spacing
dt DSMC time step

dx bin width
dy bin height
�� mean percentage error
f convergence parameter
ftol convergence tolerance
j thermal conductivity
k mean free path
l dynamic viscosity
P number of micro elements
q density
s viscous stress
U heat flux correction
X stress correction
x viscosity exponent

Subscripts
av averaged property
corr corrected property from hybrid method
pure property from pure DSMC simulation
gl global flow property
hyb property of a hybrid simulation
l local flow property
NSF Navier–Stokes–Fourier property
ref reference property
tot total
VHS Variable Hard Sphere property
wall bounding wall property
x; y; z directional components of vectors

1 Note that a benefit of coupling via correction fields, rather than the stress and
heat flux fields directly, is that the correction fields are able to provide an indication of
the system’s departure from thermodynamic equilibrium.
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