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a b s t r a c t

The inverse heat conduction problem is the estimation of the time and/or space dependence of the sur-
face heat flux or temperature utilizing interior temperature measurements at discrete times and/or loca-
tions. This problem is ill-posed since it is very sensitive to omnipresent measurement errors. Many
solution methods have been proposed including exact-matching, function specification, Tikhonov regu-
larization, iterative regularization, conjugate gradient, steepest descent and singular value decomposi-
tion. In this paper, the tools provided by the scaled sensitivity coefficients, digital filter coefficients,
and intrinsic verification are used to investigate and compare several of these methods. The utility of dig-
ital filters designed for on-line instrumentation for ‘‘continuous” measurements of the surface heat flux
and temperature in manufacturing settings is also demonstrated.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse heat conduction problem (IHCP) involves the deter-
mination of the heat flux at the surface of a solid using one or more
measured internal temperature histories. A number of methods
have been proposed including function specification [1,2],
Tikhonov regularization (TR) [1,3–5], conjugate gradient (CG)
[6–10] and singular value decomposition (SVD) methods [11–14].
The problem is challenging because it is ill-posed which is, in part,
caused by the internal measurements being delayed and damped
compared to the heated surface.

This paper has two main objectives. The first is to provide a
method of comparison and evaluation of some available methods
for the IHCP. The comparison is accomplished by providing the dig-
ital filters [15–18] underlying methods such as function specifica-
tion, Tikhonov regularization, conjugate gradient, and singular
value decomposition methods. Reference [8] discusses Tikhonov
regularization and filter coefficients but does not provide a com-
parison with the other two methods. The second objective is to
derive some filter coefficients that can enable a near real-time
analysis; it can be helpful in real-time measurements using flame

thermometers [19] and manufacturing applications. It might also
have application to surface heat flux and temperature measure-
ments in an aerospace plane or rocket re-entering the earth’s
atmosphere.

In order to make the task more manageable, only a single inte-
rior temperature history is considered and it is at the center of
Cartesian body of thickness L. The location of interest is at
~x ¼ x=L ¼ 0:5: Two types of boundary conditions are considered
at x = L, homogeneous in each case. The first case is for a zero tem-
perature rise at x = L with the notation X21B?0T0 and the second
case is insulated at x = L and denoted X22B?0T0. Filter coefficients
are found for various cases, with the emphasis on the insulated
remote boundary case. Related quantities are found that provide
insight and contribute to intrinsic verification.

A brief explanation of the solution numbering system follows.
The first character is a geometric designator, and ‘X’ denotes a
Cartesian system. The next two digits are disignators for the
boundary condition at the two interfaces (x = 0 and x = L), and
the number ‘1’ denotes a fixed temperature condition, while ‘2’
denotes a specified heat flux condition. The letter ‘B’ indicates that
the fields following that letter are boundary condition ‘‘modifiers”
that indicate the nature of the conditions at the two boundaries
just specified. The ‘0’ indicates that the heat flux at the second
boundary (x = L) is homogeneous. The ‘?’ designation is introduced
in this paper and supplements notation described elsewhere (see
[20, pages 47–60] or [21] for more on the solution numbering
system). The ‘?’ indicates that the heat flux at the first boundary
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(x = 0) is unknown and is to be found in the solution. In fact, the ‘?’
identifies this problem as an inverse problem. This is an important
distinction from the notation described in Ref. [20] where the mod-
ifier ‘-’ indicates an arbitrary time variation, and compound modi-
fier ‘x-’ denotes an arbitrary function of space.

This paper discusses sensitivity coefficients, filter formulations
and optimal comparison criteria for the inverse heat conduction
problem. Based on the criteria, a comparison of the function spec-
ification, Tikhonov regularization, conjugate gradient, and singular
value decomposition methods is given. Two heat flux time-
variation cases are considered for each of these methods and a
ranking is given based on the results.

2. Preliminary aspects

A parallel treatment of the following discussion is given else-
where [16, see also Ref. [1], pages 10–11, 83–85, and 148–152].
The measured temperature vector Y which contains N elements is

Y ¼ ½Y1 Y2 � � � YN�1 YN �T ð1aÞ
The true temperature vector T and the additive error vector e

are

T ¼ ½ T1 T2 � � � TN�1 TN �T ð1bÞ

e ¼ ½ e1 e2 � � � eN�1 eN �T ð1cÞ
Each of the above elements in Eqs. (1a, b, c) are at the same

location; the subscripts indicate the running times. The measured
temperature vector, true temperature vector and error vector are
related in the additive manner

Y ¼ Tþ e ð2aÞ
The true, but unknown, surface heat flux vector is similarly

given by

q ¼ ½ q1 q2 � � � qN�1 qN �T ð2bÞ
In this paper the heat flux is approximated by piecewise con-

stants. In the linear IHCP the true temperature vector T is related
to the heat flux vector q by the relation

T ¼ Xq ð2cÞ

where X is a sensitivity matrix; it is a square matrix with N by N ele-
ments and is given by

X ¼

X1 0 0 � � � 0 0
X2 X1 0 � � � 0 0
X3 X2 X1 � � � 0 0

..

. ..
. ..

. . .
.

0 0
XN�1 XN�2 XN�3 � � � X1 0
XN XN�1 XN�2 � � � X2 X1

2
6666666664

3
7777777775

ð3aÞ

Notice that this square matrix has the same elements in each
column but each successive column is shifted down one. The
numerical values for the first column of Eq. (3a) can be found by
using a heat flux of unity value. For the approximation of piecewise
constant values for the heat flux history, the elements of the sensi-
tivity matrix are given by

X1 ¼ /1; X2 ¼ /2 � /1; . . . ; XN ¼ /N � /N�1 ð3bÞ

where /n is the dimensionless temperature at location ~x for a unit
surface heat flux at times t1 = Dt, t2 = 2Dt,. . ., tN = NDt or in dimen-
sionless form as, ~t1 ¼ aDt=L2; . . . ; ~tN ¼ aNDt=L2.

The structure of X with the zeros in the upper right is an
indication of causality which implies that the computed tempera-
ture at a time tM is a function only of qM and previous components.
More specifically, the computed temperature at time tM is not a
function of the future components qM+1, . . ., qN. Although this

Nomenclature

k thermal conductivity, W/m-K
L thickness of 1-D domain, m
e error
E(�) expected value
f filter coefficient
f filter vector (a row of the filter matrix)
F filter matrix
Hi Tikhonov regularization matrix of order i, Eq. (15b,c,d)
I identity matrix
mf number of non-zero filter coefficient in the future
mp number of non-zero filter coefficient in the past
neig number of eigenvalues retained in SVD method
N total number of time steps
P matrix equal to FX
qi heat flux component at time ti, W/m2

q vector of heat flux components, W/m2

r number of future time steps
R residual
sY estimated standard deviation of temperature errors, K
t time, s
Ti true or computed temperature at time ti, K
T vector of true or computed temperatures, K
w descent direction
x Cartesian coordinate, m
X sensitivity matrix, Eq. (3a)
Yi temperature measurement at time ti, K
Y vector of measured temperatures, K

Greek
a thermal diffusivity, m2/s
aT Tikhonov regularization parameter
b eigenvalue
ei additive temperature error at time ti, K
e vector of additive temperature error, K
/ temperature response due to unity heat flux, K
q step size
r standard deviation

Subscripts/superscripts
C a constant value
FS function specification
f future
k iteration index
M a middle value (refers to the current time step)
N number of time steps; index of the last row of matrix
p past
q heat flux
s sensor location
ss steady-state
T Tikhonov
T temperature

Decorations
� dimensionless quantity
^ estimated value
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