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a b s t r a c t

Taylor series approximation like qðt þ sÞ � qþ s @q
@t are often used to derive, extend or interpret typical

heat conduction models. Researchers may take it for granted that the single-phase-lagging (SPL) model
can be considered as an extension of the Cattaneo–Vernotte (CV) model because there is such approxi-
mation relationship between them. We point out in this paper that this Taylor series approximation itself
has some defects based on analyses in mathematics, physics and some examples first. Then, we show
essential differences in both mathematics and physics between the CV and SPL models. It is found that
their mathematical characteristics and accordance with the laws of thermodynamics are significantly dif-
ferent, which indicates that using this approximation to connect the two models may be defective in
some cases. What’s more, higher order approximation can’t solve these problems and defects.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fourier’s law of heat conduction is often used to describe nor-
mal heat conduction problems in engineering. In recent years,
the limitations of Fourier’s law have been revealed [1–6] that
Fourier’s law predicts an unphysically infinite speed of heat pertur-
bation propagation and it fails to characterize supertransient and
high heat flux processes well. Several modified heat conduction
models were proposed to get over these limitations. The
Cattaneo–Vernotte (CV) model [7,8] is the most typical one which
leads to hyperbolic heat conduction equation and wave-like trans-
port in heat conduction processes, called thermal wave. Jeffrey
model [2] can be considered as an extension of the CV model since
it takes into account the influence of temperature relaxation. Tzou
[9] proposed the single-phase-lagging (SPL) model which can
reduce to the CV model by taking first-order Taylor series approx-
imation. Anisinov et al. [10] proposed a model for metals by
regarding the interactions of electron and phonon. Guyer et al.
[11] developed a representative model for pure phonon heat con-
duction. There are also further modifications and improvements
of these classical models. Tzou [12] proposed a dual-phase-
lagging model to add the influence of temperature lag on the basis
of the single-phase-lagging model. Coleman et al. [13] improved
the changing rate of the heat energy. Most of these models are
linear and predict limited heat conduction speed, getting over
the infinite speed problem in Fourier’s law. There are also some
non-linear models which predict limited heat conduction speed.

Thermomass theory [14–17] for heat conduction under extreme
conditions is just one of them based on relativity and
mass-energy equation. Alternative approaches to the analysis of
the diffusion equation [18–20] is another non-linear model whose
equation can be changed to Burger’s equation and therefore, some
existing conclusions in math can be used to analyze heat
conduction problems.

We have seen from the above brief review that Taylor series
approximation is adopted in several heat conduction models. Here
the CV and SPL models are taken as typical examples. The CV
model is expressed as

qþ s
@q
@t

þ krT ¼ 0; ð1Þ

where s is the thermal relaxation time, q is the heat flux density, k is
the thermal conductivity and T is the temperature. The CV model is
used to describe the supertransient heat conduction and also agrees
well with some of experiments and simulations. Consider the
single-phase-lagging model [9]

qðx; y; z; t þ sÞ þ krT ¼ 0: ð2Þ
Comparing Eq. (2) with the CV model Eq. (1), we find that for

qðx; y; z; t þ sÞ, if we use first-order Taylor series approximation

qðt þ sÞ � qþ s @q
@t

: ð3Þ

Eq. (2) will reduce to Eq. (1). Because of this approximation rela-
tionship between them, the SPL model is considered as an exten-
sion or explanation of the CV model and similar approximation
methods, such as temperature Taylor series approximation, are
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also used in deriving other typical heat conduction models
[21–25]. This approximation method is assumed to cause negligi-
bly small influence because the relaxation time is very small.

In this paper, however, we note that the Taylor series approxi-
mation can lead to very large difference no matter how small the
relaxation time is. Even if the relaxation time is very small, the
deviation between the two sides of Eq. (3) can be very large, and
there are also some essential differences in mathematics and phy-
sics between the CV and SPL models. Their mathematical charac-
teristics and accordance of the laws of thermodynamics are very
different, which shows that using this approximation to connect
the two models is defective. In addition, higher order approxima-
tion can’t solve the mathematical and physical problems caused
by first-order approximation.

2. Influence of Taylor series approximation

2.1. Deviation of heat flux field

In the approximation of heat flux Eq. (3), qðt þ sÞ doesn’t equal
to qþ s @q

@t strictly. Therefore, this approach is considered as a spe-
cial Taylor series approximation when the relaxation time s is very
small. But in fact, the deviation between the two sides of Eq. (3) is
uncertain in mathematics. First, not all functions have Taylor ser-
ies, even infinitely differentiable functions. For these functions
which don’t have Taylor series, Taylor series approximation is
infeasible because the remainders don’t tend to zero. Therefore
the deviation between the Taylor series and function is not sure.
In addition, Taylor series approximation is feasible only in their
convergence regions. That is to say, even if a function has Taylor
series, the approximation only exists in some certain regions.
Second, even if we can make sure that Taylor series approximation
exists and the relaxation time s is very small, the deviation
between the two sides of Eq. (3) is not necessarily very small. This
is because the relaxation time s is a physical property. It must be a
real number, not an ‘‘infinitesimal” in mathematics. As long as s is
not an infinitesimal, the deviation between qðt þ sÞ and qþ s @q

@t can

still be very large because the higher order derivative terms sn @nq
@tn

are unknown. Although sn are very small, @
nq
@tn can also be very large

and, their products are uncertain. Because of these uncertain
higher order derivative terms, the deviation between qðt þ sÞ and
qþ s @q

@t is uncertain either. In summary, even if the relaxation time
s is very small, the deviation between the two sides of Eq. (3) can
still be very large. As examples, we will discuss this problem below
in some common functions which often appear in heat conduction
problems. Consider the heat conduction equations of Fourier’s law
Eq. (4) and the CV model Eq. (5)

@T
@t

¼ k
qcV

r2T; ð4Þ

@T
@t

þ s @
2T
@t2

¼ k
qcV

r2T: ð5Þ

For Eq. (4), a general method is to make a separation of variables
T ¼ f ðtÞgðxÞ. Substituting it into Eq. (4) gives

f 0

f
¼ g00

g
¼ �kn; ð6Þ

f 0ðtÞ þ knf ðtÞ ¼ 0: ð7Þ
Solving this ordinary differential equation, we obtain

f ðtÞ ¼ Ce�knt . The part determined by time of temperature field has
a form of exponential function. For Eq. (5), we can also make a sep-
aration of variables T ¼ f ðtÞgðxÞ. Substituting it into Eq. (5) gives

1
s f

0 þ f 00

f
¼ k
qcVs

g00

g
¼ �kn; ð8Þ

1
s
f 0 þ f 00 þ knf ¼ 0: ð9Þ

There will be different cases. When 1
s2 � 4kn > 0, the solution is

f ðtÞ ¼ A1ex1t þ B1ex2t which also has a form of exponential function.
x1; x2 are the real roots of x2 þ 1

s xþ kn ¼ 0. When 1
s2 � 4kn < 0, the

solution is f ðtÞ ¼ ex3tðA2 sin x4t þ B2 cos x4tÞ. x3 þ x4i; x3 � x4i are
the complex roots of x2 þ 1

s xþ kn ¼ 0. We can find that not only
exponential function but also trigonometric function appears.
From the above analyses we can find that the part of temperature
field determined by time can be expressed by exponential and
trigonometric functions in the method of separation of variables.
So, we can make sure the deviation between the two sides of
Eq. (3) in these functions to show this deviation in heat conduction
problems.

2.1.1. Deviation in trigonometric function
Consider a heat conduction problem with heat source

/ ¼ � 2npq0qcV x
ks cos 2npt

s . In this case, the energy conservation equa-
tion is expressed as

@q
@x

¼ �qcV @T
@t

þ /: ð10Þ

Substituting it into Eq. (2) leads to

qcV
k

@qðt þ sÞ
@t

þ @/
@x

¼ r2q: ð11Þ

The initial condition is taken qjt¼0 ¼ 0 and the boundary condi-
tions are taken qjx¼0;l ¼ q0 sin 2npt

s . For this problem, we can get its
classical solution

qðx; tÞ ¼ q0 sin
2npt
s : ð12Þ

It is worth mentioning that for this problem, Eq. (12) is also
equivalent to Fourier’s Law because qðx; tÞ ¼ qðx; t þ sÞ. Then we
can use Eq. (12) to show the deviation in Eq. (3). For the heat flux
expressed by Eq. (12), we can get its Taylor series approximation

qþ s @q
@t

¼ q0 sin
2npt
s

þ 2np cos
2npt
s

� �
: ð13Þ

The relative deviation between qðt þ sÞ and qþ s @q
@t is

g ¼ qþ s @q
@t � qðt þ sÞ
qðt þ sÞ ¼ 2np cot

2npt
s

: ð14Þ

We find that Eq. (14) is a periodic function and its value can
reach infinity. No matter how small the relaxation time s is (larger
than zero), the relative deviation can still be very large. The large
deviation will always appear because Eq. (14) is a periodic func-
tion. Fig. 1 shows the heat flux fields with the form of trigonomet-
ric function which belongs to original heat flux qðt þ sÞ and heat
flux with Taylor approximation qþ s @q

@t (q is expressed by
Eq. (12) and n ¼ 1). In Fig. 1, the heat flux with Taylor
approximation has far larger amplitude than the original heat flux.
Therefore, the deviation caused by Taylor approximation can be
very large and we find that the difference between the two heat
flux fields is in periodical vibration. In fact, Fig. 1 is for the case
of n ¼ 1, and the difference between them will be larger and larger
with the increase of n.
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